Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

24/12/2011

CERN : La "particule de Dieu" en voie d’être identifiée ?

Franchement, tout cela ne vous fait-il pas rire quand ils prétendent trouver la particule Divine et nous expliquer soi-disant le Big Bang et comment l'Univers s'est construit, quand ils ne connaissent que 4 % de la matière dite noire de l'Univers ?

Au passage quand ils parlent du Big bang et de la création de l'Univers, ils nous donnent l'impression d'appeler notre toute petite galaxie, l'Univers.

C'est comme il faut s'émerveiller pour toutes les nouvelles planètes qui sont soi-disant découvertes et qui existent depuis des milliards d'années. L'Univers étant constitué de milliards de galaxies et de milliards de milliards de planètes comme la nôtre ou pas, et où est le scoop quand ils en découvrent une ?

Ils nous prennent pour des gamins de la maternelle qui s'émerveillent quand on leur raconte une belle histoire.  Pendant qu'ils détournent notre attention sur ces soi-disant nouvelles découvertes, les élites font avanczer leurs plans machaibléiques derrière notre dos.

Ils feraient mieux de nous parler des secrets du Vatican, de lever le secret maçonnique, de lever le secret défense qui plombe le dossier ET et OVNIS dans le monde et de nous parler des énergies libres qu'ils nous cachent depuis plus de 60 ans et qui leur servent à fabriquer des armes contre l'humanité.

Là nous serions vraiment informés sur l'histoire du monde et sur l'élite qui tient le monde sous sa coupe depuis des millénaires.

 

La "particule de Dieu" en voie d’être identifiée ?

Publié le 13 décembre 2011

L’avancée scientifique n’est pas encore établie, mais elle pourrait être en bonne voie. Les scientifiques de l'Organisation européenne pour la recherche nucléaire (CERN) "ont réduit la fenêtre dans laquelle ils pensent pouvoir trouvé le boson de Higgs", selon le physicien français Bruno Mansoulié, un chercheur du CERN.

Le boson de Higgs (du nom du physicien qui en a postulé l’existence en 1964) est une particule capitale, car elle est la pièce manquante du Modèle standard, c’est-à-dire la théorie fondamentale de la matière qui décrit toutes les particules de l’univers. Le boson de Higgs pourrait expliquer pourquoi certaines particules ont une masse et d’autres pas, car il voyagerait entre ces différents types de particules.

Le CERN mène deux expériences pour identifier ce fameux boson. L’une d’elle consiste à faire s’entrechoquer des protons dans un immense anneau souterrain de 27 kilomètres de diamètre pour chercher des traces du boson de Higgs dans les débris faisant suite au choc. Le but n’est ni plus ni moins de tenter de recréer les conditions qui ont prévalues juste après le big bang.  En 2011, 400 milliards de collisions ont été faites par le CERN, afin d’accumuler un maximum de données pour identifier le boson de Higgs. Sa masse pourrait, selon le CERN, être comprise entre 115 et 130 gigaélectronvolts (GeV).

Le boson de Higgs est connu sous le nom de particule de Dieu, ou "The God particle", ainsi que l’avait nommé le physicien lauréat du prix Nobel Leon Lederman. Car comme Dieu, il serait partout mais de façon très élusive.

L’interaction entre les particules ayant une masse et celles n’en ayant pas crée trois forces, la force forte, la force faible et force électromagnétique. Une quatrième force existe, la gravité, qui pourrait être expliquée par un boson qui doit être encore découvert, le graviton.

http://www.atlantico.fr/pepites/particule-dieu-voie-etre-...


23/12/2011

Boson de Higgs ou particule Divine : la tension monte au Cern !

Comme si nous avions besoin que la science sans conscience et parfois criminelle, vienne nous démontrer l'existence de la particule Divine quand nous n'avons qu'à nous regarder et à regarder la nature tout autour de nous, pour voir qu'elle existe bien depuis la nuit des temps et qu'elle est éternelle, tout comme notre âme Divine qui est en nous.
 
La science comme la religion : deux inventions diaboliques pour nous détourner de nous-mêmes et de Dieu lui-même.

 Boson de Higgs : la tension monte au Cern !

Le 12 décembre 2011 à 13h47
 

Suspens autour du Higgs : le 13 décembre 2011, en début d'après-midi, un séminaire du Cern sera retransmis sur la Toile. On est certain que la découverte de la fameuse particule... ne sera pas révélée. Mais il sera probablement question d'indices de son existence dans deux détecteurs du LHC. Avant cette annonce, révisons un peu ce sujet pour mieux comprendre ce qui se dira demain au Cern.

En cherchant à construire des équations décrivant des champs de forces entre particules de matière et respectant les lois de la mécanique quantique et de la théorie de la relativité, on a la surprise de constater que la forme générale de ces équations est très contrainte. Il faut que ces équations ressemblent à celles de l'électromagnétisme avec l'équivalent des photons. On voit aussi apparaître des sortes de généralisations de la charge électrique.

Avec ces équations, on s'aperçoit rapidement que si nous pouvons voir la lumière des plus lointaines régions de l'univers observable, en particulier celle des quasars et du rayonnement fossile, c'est parce que la masse du photon est nulle, ou tellement faible que nous n'avons toujours pas été capables de la mesurer.

Le Higgs, la solution à un problème des divergences infinies du modèle standard

Si nous ne sentons pas à notre échelle les « photons nucléaires forts » que sont les pions de Yukawa liant les protons et les neutrons dans les noyaux, ou les « photons nucléaires faibles » que sont les bosons W et Z qui interviennent dans la radioactivité et la physique des neutrinos, c'est parce qu'ils sont massifs et ne transmettent donc que des forces à courtes portées.

Malheureusement, si l'on essaie de construire l'analogue des équations de Maxwell pour ces « photons nucléaires faibles » (ce qu'on appelle des équations de Yang-Mills), le fait qu'ils doivent être massifs conduit à des problèmes mathématiques caractérisés par l'apparition de quantités infinies en théorie quantique des champs relativistes.

On peut se débarrasser de ces problèmes en introduisant un nouveau champ dont les quanta d'énergie sont, tout comme les photons, des bosons. Ce champ qui donne une masse aux photons nucléaires est décrit par ce qu'on appelle le mécanisme de Higgs. Son « photon » associé est donc le boson de Higgs et, au passage, rappelons qu'il n'a rien à voir, ni de près ni de loin avec la Force de Star Wars, comme certains le prétendent dans les médias actuellement...

De gauche à droite Chen Ning Yang et Robert Mills en pleine discussion à la fin des années 1990
De gauche à droite Chen Ning Yang et Robert Mills en pleine discussion à la fin des années 1990. © Nu Xu

Indirectement, cette particule apparaît dans plusieurs des calculs décrivant les interactions entre quarks et leptons dans le cadre du modèle standard des particules (MS), c'est-à-dire la chromodynamique quantique et la théorie électrofaible de Glashow-Weinberg-Salam. Le champ de Higgs joue également un rôle dans la détermination des masses des quarks et des leptons, c'est-à-dire, cette fois, les particules de matière du modèle standard.

Un mécanisme général pour doter les particules de masse

D'une façon ou d'une autre, il doit effectivement exister quelque chose qui ressemble au mécanisme de Higgs donnant une masse aux particules du modèle standard. En effet, sa présence a déjà été plus ou moins testée indirectement avec le succès des calculs décrivant des réactions dans les collisions du LEP et du Tevatron.

Le boson de Higgs lui-même doit être massif, mais l'un des problèmes du modèle standard est que nous ignorons la valeur de sa masse et la façon dont il influence précisément les diverses réactions entre particules.

Plusieurs paramètres libres du modèle standard (19 pour être précis) proviennent, pour le moment, des expériences seules. C'est le cas notamment de la masse des électrons et des quarks. Si le Higgs existe bien, il devrait être possible de mieux comprendre (mais pas complètement) pourquoi ces paramètres ont ces valeurs. Avant la découverte des protons, électrons et noyaux, on ne savait pas d'où provenaient les masses et la diversité des éléments ni les énergies des réactions chimiques. Cette ignorance pointait vers une physique plus fondamentale. Pour la même raison, on peut penser qu'une théorie plus vaste se cache derrière les impressionnants succès du modèle standard.

De plus, bien que l'on ait rassemblé les forces électromagnétiques et nucléaires faibles en un seul système d'équations grâce au boson de Higgs, il reste à faire la même chose avec les forces nucléaires fortes et finalement la gravitation. Tout naturellement, on s'attend à ce que d'autres bosons de Higgs interviennent dans ces équations de Grande Unification (GUT et supergravité notamment).

Plusieurs bosons de Higgs possibles et plusieurs fenêtres d'observation

Si on cherche à plonger le modèle standard dans une théorie plus vaste (comme la supersymétrie), la masse de son boson de Higgs et la façon dont elle influence les réactions entre les particules peuvent être mieux comprises. Dans certains cas, cela nécessite de changer un peu ce à quoi on doit s'attendre dans le cadre du modèle standard.

La morale de tout cela est qu'il peut exister plusieurs bosons de Higgs et que la plus simple description du mécanisme expliquant les masses du MS à l'aide d'un boson de Higgs standard, n'est peut-être pas la voie que la nature a choisie. Mais surtout, la découverte du Higgs peut ouvrir la porte à une compréhension plus profonde de la physique, à la racine de tout ce qui existe, des particules de nos neurones à la naissance même de l'univers.

Plusieurs réactions entre particules peuvent produire un boson de Higgs et celui-ci peut se désintégrer en plusieurs autres particules. Comme il est de règle en mécanique quantique, elles sont gouvernées par des lois de probabilités. En fonction de l'énergie des particules entrant en collisions et de la masse du Higgs, ses taux de production et de désintégrations selon divers « canaux », comme disent les physiciens des particules, sont différents (voir le schéma ci-dessous). Il a donc fallu réfléchir aux stratégies les plus efficaces pour produire et détecter le boson de Higgs.

Sur ce schéma sont montrées les importances relatives de certains canaux de désintégration du Higgs en fonction de sa masse. On voit ainsi qu'entre 100 GeV et 150 GeV il y a une bosse pour le canal de désintégration avec deux photons gamma. Au-delà de 200 GeV le canal avec la production d'un quark b et d'un antiquark b devient complètement négligeable devant ceux avec bosons Z ou W. Bien que ces derniers soient des canaux fortement favorisés par rapport à celui avec deux photons vers 130 GeV, le signal en gamma est moins bruité que le signal en ZZ ou WW, c'est pourquoi, si le Higgs standard  existe et a bien une masse entre 115 GeV et 140 GeV, les premiers indices de son existence seront ces photons gamma.
Sur ce schéma sont montrées les importances relatives de certains canaux de désintégration du Higgs en fonction de sa masse éventuelle. On voit ainsi qu'entre 100 GeV et 150 GeV apparaît une bosse au niveau du le canal de désintégration à deux photons gamma (pointillé rouge). Au-delà de 200 GeV le canal caractérisé par la production d'un quark b et d'un antiquark b (courbe rouge) devient complètement négligeable devant ceux avec bosons Z ou W. Bien que ces deux canaux soient fortement favorisés par rapport à celui à deux photons vers 130 GeV, le signal en gamma est moins bruité que le signal en ZZ ou WW. C'est pourquoi, si le Higgs standard existe et a bien une masse entre 115 GeV et 140 GeV, les premiers indices de son existence seront ces photons gamma. © Cern-Konrad Jende

On en a ainsi déduit que les réactions les plus efficaces pour produire le boson de Higgs sont les collisions de protons ou d'antiprotons. Malheureusement, dans ce cas, plusieurs autres réactions se produisent, générant un bruit de fond noyant la délicate musique des désintégrations du boson de Higgs.

Toutefois, si l'on prend une analogie issue des transmissions de radio, il existe des bandes de fréquence où le bruit de fond est plus faible et où la musique du Higgs se fait plus forte. Selon sa masse, la bande où le chercher le plus efficacement ne sera donc pas la même.

Le "Large Hadron Collider" (français)

http://www.youtube.com/watch?v=txEekZcgl4s&feature=pl...

Une belle vidéo expliquant l'aventure de la physique des hautes énergies au LHC. © Cern/YouTube

La fenêtre des photons gamma et des bosons Z

On a joué à ce jeu au LEP au début des années 1990 à partir de collisions entre électrons et positrons. Le Tevatron a pris la suite en collisionnant des protons et des antiprotons. C'est maintenant au tour du LHC, où CMS et Atlas étudient les particules issues des collisions de protons. Lentement mais inexorablement, les bandes où chercher des signaux du boson de Higgs standard se sont réduites.

Si l'on devait prendre une analogie issue de l'astronomie, le boson de Higgs serait une étoile dont on ne connaîtrait pas très bien la courbe donnant l'intensité du rayonnement en fonction de la longueur d'onde. Même si la forme générale de la courbe est connue et que la physique de l'étoile l'est aussi dans les grandes lignes, on ne sait pas très bien si l'astre est le plus brillant dans l'ultraviolet ou l'infrarouge.

De plus, pour l'identifier, il faut disposer d'une bonne photographie, c'est-à-dire enregistrer le maximum de photons avec la meilleure résolution et donc faire une pose la plus longue possible. En physique des particules, cela revient à « augmenter la statistique », c'est-à-dire enregistrer un nombre suffisamment élevé d'événements avec un grand nombre de collisions.

Un diagramme montrant la désintégration du boson de Higgs dans le canal avec deux photons gamma. Il semble qu'Atlas et CMS voient tous les deux des signes de ce mode de désintégration du boson de Higgs avec une masse similaire de l'ordre de 126 GeV.Il semble bien plus incertain que l'on annonce voir aussi une signature du boson de Higgs dans un autre canal de désintégration, celui des bosons Z. Voici un exemple d'un tel canal de désintégration des bosons Z.
En haut : Diagramme montrant la désintégration du boson de Higgs dans le canal avec deux photons gamma. Il semble qu'Atlas et CMS voient tous les deux des signes de ce mode de désintégration du boson de Higgs avec une masse similaire de l'ordre de 126 GeV.
En bas : Désintégration selon le canal des bosons Z. Il semble bien moins sûr que l'annonce de demain mentionne une telle signature du boson de Higgs. © Matthew Strassler

Bilan actuel :

 

  • si le boson de Higgs standard existe, il doit avoir une masse comprise entre 115 GeV et 140 GeV ;
  • les canaux de désintégrations où il est le plus facilement mis en évidence sont ceux où il produit deux photons gamma, deux bosons W ou encore deux bosons Z qui se désintègrent à leur tour en leptons, comme l'électron, le muon ou le neutrino (et bien sûr leur antiparticules).

Pour être sûr qu'une découverte a vraiment été faite, il faut que le signal obtenu soit très différent de simples fluctuations statistiques. On peut faire l'analogie avec les formes qu'on se plaît à voir dans les nuages : aucune cause particulière autre que le hasard n'est alors à l'oeuvre mais si on découvrait un nuage portant tous les détails d'une fresque de Raphael, on ne pourrait plus croire à un phénomène aléatoire. Pour éliminer le risque d'enregistrer un faux signal à cause d'une erreur de construction ou de conception d'un appareil (ce que les scientifiques appellent un biais systématique), on utilise deux instruments de mesure différents. Ce qui explique en partie pourquoi Atlas et CMS ont été construits. Voir deux signaux similaires dans deux détecteurs est donc bien plus convaincant, même en l'absence d'une statistique suffisante, pour confirmer une découverte.

Tout ceci explique l'importance du séminaire du 13 décembre 2011 au Cern, qui devrait annoncer non pas la découverte de la musique du boson de Higgs mais d'une mélodie faible noyée dans un brouhaha, dans la même bande de fréquence par deux « postes de radio » différents, à savoir Atlas et CMS. Un séminaire donc attendu impatiemment par toute la communauté de la physique des hautes énergies.

Pour suivre la retransmission du Cern, rendez-vous sur la page dédiée.

Peter Higgs devant les équations décrivant sa théorie de la brisure de symétrie donnant une masse à des bosons de jauge. © Peter Tuffy/<em>The University of Edinburgh</em>

Peter Higgs devant les équations décrivant sa théorie de la brisure de symétrie donnant une masse à des bosons de jauge. © Peter Tuffy/The University of Edinburgh
 

26/11/2011

Antarctique : la BBC filme en accéléré un incroyable phénomène sous-marin

Voici, comment ils interprètent ce phénomène naturel, en le qualifiant de macabre et mortel.

Et si tout simplement la nature avait ses moyens pour protéger des germes de vie par la cryogénèse dont on le sait, elle permet de faire hiberner et de conserver intactes, les cellules pour leur redonner vie ultérieurement ? 

N'est-ce pas par le froid que les banques de sperme conservent les spermatozoïdes pour notamment pratiquer les inséminations artificielles ?
 
Dans cette période de grands changements cosmiques et terrestres, c'est une hypothèse qui ne serait pas à exclure.

 

Antarctique : la BBC filme en accéléré un incroyable phénomène sous-marin

 
Info rédaction, publiée le 24 novembre 2011

image-d-un-brinicle-extrait-de-la-video_37063_w460.jpg

Hugh Miller et Doug Anderson, caméramen de la BBC sont parvenus pour la toute première fois à enregistrer des séquences d’un phénomène naturel désigné par les scientifiques sous le nom anglophone de "Brinicle".

Les images surprenantes montées en accéléré, présentent une structure gigantesque assimilable à une éponge de glace imbibée d’eau salée. Son aspect redoutable lui vaut le surnom de "doigt de glace de la mort". En effet, à la dérive sous les eaux de l’Antarctique, cette effrayante colonne d'eau glacée gèle tout ce qui croise son parcours, y compris la faune du plancher océanique.
 

18/10/2011

Nous devons la théorie sur la relativité à un Français, Jules-Henri Poincaré - L'Escroquerie d'Einstein: la Relativité de Poincaré

Voilà comment on nous enfume depuis des décennies.

Pour quelles raisons légitimes un français ne devait-IL pas être reconnu comme étant le découvreur de la théorie de la relativité ?
Rendons à César ce qui appartient à César, ce qui n'enlève en rien les travaux d'Einstein.
 

L'Escroquerie d'Einstein : la Relativité de Poincaré
(Radio Courtoisie, 1991/05/08)
 

 
Scoop énorme : Albert Einstein aurait pompé toute la "Théorie de la Relativité" à un Chercheur-Mathématicien français !
Il s'appelle Jules-Henri Poincaré (1854-1912), cousin germain du Président français Raymond Poincaré, il aurait tout découvert, formalisé et publié juste avant son homologue apatride. Einstein n'aurait fait que le lire puis, après la mort de Poincaré en 1912, les mass média américains auraient lancé l'apatride comme on lance une vedette de la Star Academy.

Les explications par Dean Mamas, Docteur en physique nucléaire, américain d'origine grecque, militant pour la réhabilitation de Poincaré.

Date: Mercredi 8 Mai 1991.
Invité: Dean Mamas; présence de Roger Holeindre, Nicolas Portier & Jean-François Touzet.
Présentation: Serge de Beketch.
Emission: Le Libre Journal.
Source: Radio Courtoisie.
 
Quelques références complémentaires :

La Relativité, Poincaré et Einstein, Planck, Hilbert : Histoire véridique de la Théorie de la Relativité

Présentation de l'éditeur

" A l'aube du vingtième siècle, un jeune homme de vingt-six ans révolutionne la Physique malgré l'opposition de tous les vieux savants. " Depuis cent ans cette belle légende fait rêver bien des étudiants ravis de voir pour une fois un jeune l'emporter sur les vieux... Mais ce n'est qu'une image d'Epinal bien éloignée de la réalité. Il est vrai que la réalité est proprement incroyable. Il est aujourd'hui de plus en plus souvent reconnu que Henri Poincaré et Hendrik Antoon Lorentz sont les véritables fondateurs de la théorie de la Relativité et que l'" article fondateur " d'Albert Einstein, en 1905, est une compilation de leurs travaux. Mais on s'est longtemps demandé comment tout cela avait été possible. Il est probable que, dans une période normale, un tel secret partagé par tant de gens n'aurait pas tenu bien longtemps. Mais la " Belle Epoque " n'est pas une période normale, c'est une époque de nationalisme déchaîné dont il nous est difficile de nous faire une idée. Pour les scientifiques allemands de l'Université de Gtittingen il n'était pas pensable de laisser à un Néerlandais, et surtout à un Français, le bénéfice d'une découverte fondamentale sur laquelle ils travaillaient depuis des années ! Il fallait absolument que cette découverte revienne à l'Allemagne. Einstein n'est pas le vrai coupable, il n'est qu'un rouage dans une machination dont le principal responsable est le mathématicien David Hilbert qui jalousait Poincaré au-delà de toute raison et qui a réussi à entraîner dans cette occultation délibérée le physicien Max Planck et son journal scientifique les Annalen der Physik. Les savants français ont eu leur part de responsabilité. Peu d'entre eux ont lu et compris les travaux de Poincaré, aucun ne l'a défendu. Bien entendu ce bouleversement de l'histoire de la Science est très solidement étayé comme il se doit. Tous les documents nécessaires ont été soigneusement recherchés et traduits, et l'on va de surprise en surprise... " L'authentique historiographie brise sans ménagement les images d'Epinal ; elle remplace les stéréotypes et les préjugés par des faits réels, extraits patiemment des archives " (Emmanuel Leroy-Ladurie). Jules Leveugle a gardé de ses études scientifiques un intérêt constant pour l'histoire des sciences car " on ne comprend bien que ce dont on connaît l'histoire "... et la méthode scientifique ne consiste t-elle pas à remettre en question même ce qui paraît bien établi ?


Henri Poincaré et la relativité

http://fr.wikipedia.org/wiki/Henri_Poincar%C3%A9#Poincar.C3.A9_et_la_relativit.C3.A9


Poincaré et la Relativité

Christian Marchal 
Direction Scientifique Générale
Office National d'Etudes et de Recherches Aérospatiales
BP 72, 92322 Châtillon cedex, France
 
Document papier communiqué par G. Hoynant,
 mis sous forme informatique par J. Fric,
 vérifié par G.Hoynant

Avant-propos

En Avril 1994 la Jaune et la Rouge publia une étude de Jules Leveugle intitulée «Poincaré et la Relativité » (Réf 7), étude dans laquelle ce polytechnicien présente les documents qui soulignent la participation prépondérante de Henri Poincaré à la genèse de la Relativité.

Cette question a soulevé un grand intérêt et provoqué un abondant courrier, c'est pourquoi elle est abordée de nouveau avec ses récents développements et avec un point de vue plus large retraçant le lent cheminement de la pensée scientifique : la route n'était ni évidente ni facile.

Résumé :

Les équations électromagnétiques de Maxwell et les vieilles notions newtoniennes de temps absolu et d'espace absolu étaient contradictoires avec l'impossibilité de la détection du mouvement absolu de la Terre.

Cette situation conduisit Henri Poincaré à considérer que le temps absolu, l'espace absolu et « l'éther » correspondant sont artificiels et n'existent pas réellement.  Les modifications des systèmes de références inertiels ne suivent pas les règles de Galilée mais celles de la transformation de Lorentz, lesquelles peuvent être déduites du principe de relativité de Poincaré de 1904.

Malheureusement la santé de Poincaré était mauvaise ; il devint cancéreux en 1909 et mourut en 1912.  Il est heureux que son travail de pionnier ait été poursuivi par Einstein qui popularisa la Relativité.

Pour quelles raisons Poincaré est-il si ignoré et Einstein si célèbre?  Essentiellement à cause des divisions et des oppositions de la société française.  Les physiciens refusaient d'admettre que Poincaré, ce prodigieux mathématicien, était aussi l'un d'entre eux... et sa parenté avec son cousin germain Raymond Poincaré, homme politique de premier plan, n 'était pas faite pour calmer les esprits.

La théorie de la Relativité est le résultat d'une très longue maturation des connaissances et des idées de l'humanité confrontée aux propriétés de la matière, de l'énergie, de l'espace et du temps.

Commençons avec l'état de cette confrontation dans la seconde moitié du XIX' siècle.

Les cinq principaux éléments sont alors les suivants

1) La relativité galiléenne.

Pendant des siècles on a cru que la force était proportionnelle à la vitesse : vous poussez sur un objet et il se déplace, vous cessez de pousser et il s'arrête.  Il faut des observations difficiles et une réflexion poussée sur les frottements pour comprendre qu'en l'absence de force le mouvement reste rectiligne et uniforme (Galilée, Descartes) et que la force est proportionnelle à l'accélération (Newton).

Le motif réel de Galilée était la compréhension du mouvement orbital de la Terre celle-ci ne perd pas son atmosphère et ses océans le long de son orbite ! Galilée avait besoin de ce que nous appelons aujourd'hui la relativité galiléenne : « Une expérience de mécanique donne les mêmes résultats dans un laboratoire fixe et dans un laboratoire en mouvement rectiligne et uniforme », soit en termes pratiques : vous pouvez boire votre café comme d'habitude aussi longtemps que votre avion vole d'un mouvement rectiligne et uniforme sans être secoué par le vent ... (1)

2) Le mouvement de la Terre.

Copernic et Galilée n'avaient pas de preuves physiques du mouvement de la Terre et c'est pourquoi Copernic présentait son travail comme une hypothèse tandis que Galilée était plus affirmatif. Fort heureusement, au milieu du XIX° siècle, ce mouvement était fermement établi sur ses trois preuves classiques : l'aberration des étoiles (Bradley, 1727), la parallaxe des étoiles (Bessel, 1840) et le pendule de Foucault (1851).

 

3) Le temps absolu ou « newtonien ».

« Tempus absolutum verum et mathematicum... »

« Le temps absolu, vrai et mathématique, par sa nature même indépendant de toutes les autres grandeurs, coule uniformément et sera désigné par le mot durée.

Le temps relatif, apparent et vulgaire, est la mesure, plus ou moins précise, subjective et toute extérieure, de la durée par les mouvements des astres, dont on se sert habituellement au lieu du vrai temps, comme l'heure, le jour, le mois, l'année ». (Newton, Philosophia Naturalis Principia Mathematica, 2° édition, Cambridge, 1713).

A l'époque de Newton, et même deux siècles plus tard, aucune horloge n'était capable de révéler les petites différences liées aux effets relativistes.  Il était donc très naturel de supposer l'existence du « temps absolu », ce paramètre essentiel de tant de lois physiques, et la définition newtonienne apparaissait alors essentiellement comme un avertissement « attention, la rotation de la Terre n'est peut-être pas tout à fait régulière ».

4) L'espace euclidien absolu et la notion de force.

La loi de l'inertie : accélération = force / masse est valable seulement dans les référentiels « galiléens » ou « inertiels » qui ne tournent pas et dont les mouvements relatifs sont rectilignes et uniformes.

Dans la seconde moitié du XIX° siècle les géométries non-euclidiennes de Lobatchevsky, Bolyai et Riemann étaient considérées comme des curiosités mathématiques sans grand intérêt et chacun considérait l'espace physique comme euclidien.

Le fantastique succès de la théorie newtonienne de l'attraction universelle confortait toutes ces notions.  Cette théorie ne conduisait-elle pas à une description remarquablement précise des mouvements planétaires et n'avait-elle pas permis la découverte de Neptune (1846) après les longs calculs de Leverrier et d'Adams ?

En 1850, toutes les lois de la mécanique étaient en accord avec la relativité galiléenne, elles étaient conservées par les transformations ordinaires de référentiels galiléens, par exemple par l'expression classique:

(1)                    x1 = x - Vt   vitesse V constante du second référentiel par rapport au premier.

                        y1 = y ; z1=  z ; t1 = t: temps absolu.

 

5) Les équations de l'électromagnétisme (Maxwell 1864).

Les équations de Maxwell représentent un progrès majeur de la connaissance de la matière, sans doute un progrès aussi important que celui de la loi de l'attraction universelle.  Elles sont cependant la source des difficultés : elles ne sont pas conservées dans les transformations galiléennes des référentiels.

Considérons leur expression la plus simple dans le vide.  Le vecteur champ électrique E et le vecteur induction magnétique B sont liés par les quatre équations suivantes

(2) div E = 0 ; div B = 0 ; rot E  = - B /t ; rot B = m0e0E / t avec :

m0 = perméabilité magnétique du vide = 4p. 10-7  Henry par mètre.

e0 = permittivité du vide = 8,854 187 82  10-12Farad par mètre.

Les solutions les plus simples sont les ondes planes, par exemple celles se propageant dans la direction de Ox :

u = x - ct ; avec c = (m0e0) -1/2 = 299 792 458 m / s

 (3)               E = [ 0 , cf(u) , cg(u) ];                        B= [0 , - g(u) , f(u) ]

 f(u) et g(u) sont des fonctions continûment dérivables arbitraires.

Donc, dans le système de référence Oxyzt approprié dans lequel les équations (2) de Maxwell sont valables, les ondes planes se déplacent avec la vitesse c, la vitesse des ondes électromagnétiques.  Cette vitesse fut aussi reconnue comme la vitesse de la lumière après les expériences de Hertz sur les similitudes entre lumière et électromagnétisme.

Malheureusement la transformation galiléenne (1) ne conserve pas la vitesse c, nous devons donc choisir entre les deux possibilités suivantes :

A)           Ou bien les équations de Maxwell sont rigoureuses par rapport à un référentiel particulier Oxyzt et seulement approchées dans les référentiels en mouvement lent (comme ceux de nos laboratoires terrestres).

B)           Ou bien les équations de Maxwell sont rigoureuses pour tous les systèmes de références inertiels et la relativité peut être étendue de la mécanique à l'électricité et à l'optique.  Mais il y a un prix à payer : les notions de temps et d'espace absolus doivent être abandonnées car elles sont contradictoires avec l'invariance de la vitesse de la lumière.

Le temps absolu newtonien semblait si évident que l'hypothèse A fut immédiatement adoptée.  Le référentiel hypothétique Oxyzt prit une consistance concrète avec l'invention de «l'éther », milieu très léger et très subtil, censé jouer pour la lumière et l'électromagnétisme le rôle de l'air pour le son.

L'étape suivante était évidemment la recherche des propriétés de l'éther et la détermination du mouvement « absolu » de la Terre, c'est à dire de son mouvement par rapport à l'éther, par des expériences appropriées d'optique ou d'électromagnétisme.

L'expérience de Fizeau (mesure de la vitesse de la lumière dans un courant d'eau, 1851) et celle d'Airy (mesure de l'angle d'aberration dans un télescope plein d'eau, 1871) semblaient montrer un « entraînement partiel de l'éther » par les milieux transparents.

En utilisant toutes sortes d'idées et d'équipements, un grand nombre d'expérimentateurs (Trouton et Noble, Lodge, Kennedy et Thorndyke, etc.) essayèrent d'étudier les propriétés de l'éther et de déterminer le mouvement absolu de la Terre, mais sans succès.

Les expérimentateurs les plus célèbres sont Michelson et Morley.  Leur expérience (1887) fut incapable de détecter une anisotropie de la vitesse de la lumière en dépit d'une précision dix fois surabondante.

Il est heureux que le mouvement de la Terre ait été fermement établi dans l'esprit des scientifiques de ce siècle.  Deux siècles auparavant l'explication la plus simple aurait été : la Terre ne bouge pas...

Pendant que ces expériences étaient faites, les théoriciens obtenaient un certain nombre de résultats intéressants.

Lorentz et Fitzgerald notèrent qu'une contraction appropriée par le « vent d'éther » peut expliquer l'isotropie apparente de l'expérience de Michelson et Morley.

En 1887, Voigt obtint une transformation de coordonnées conservant les ondes planes et les ondes sphériques de Maxwell.

En 1895, Lorentz nota que le premier ordre de la transformation de Voigt conserve le premier ordre des équations de Maxwell.

Larmor donna le deuxième ordre un peu plus tard.

Dans son grand mémorandum de Mai 1904 (réf 1), Lorentz donna une extension de la transformation de Voigt préservant les équations de Maxwell dans le vide.

Les plus grands progrès sont dus au mathématicien, physicien et philosophe Henri Poincaré, qui était un ami de Lorentz.  Ils échangèrent de nombreuses lettres scientifiques à partir de 1895 et améliorèrent pas à pas leurs analyses.

Les progrès successifs dus à Poincaré sont les suivants

A)   Dans le livre La science et l'hypothèse (1902), pages 111, 245 et 246 (réf.2):

Il  n'y a pas d'espace absolu et nous ne concevons que des mouvements relatifs.

Il n'y a pas de temps absolu ; dire que deux durées sont égales, c'est une assertion qui n'a par elle-même aucun sens et qui n'en peut acquérir un que par convention.  Non seulement nous n'avons pas l'intuition directe de l'égalité de deux durées, mais nous n'avons même pas celle de la simultanéité de deux événements se produisant sur des théâtres différents.

Peu nous importe que l'éther existe réellement, c'est l'affaire des métaphysiciens ... un jour viendra sans doute où l'éther sera rejeté comme inutile ... Ces hypothèses ne jouent qu'un rôle secondaire.  On pourrait les sacrifier ; on ne le fait pas d'ordinaire parce que l'exposition y perdrait en clarté, mais cette raison est la seule. ( 2)

B) Le congrès scientifique mondial de Saint-Louis (Missouri, Septembre 1904).

Henri Poincaré est invité à présenter une conférence générale sur « L'état actuel et l'avenir de la Physique mathématique »(réf. 11).  Il ajoute audacieusement le « principe de relativité » au cinq principes classiques de la Physique :

« Le principe de relativité, d'après lequel les lois des phénomènes physiques doivent être les mêmes pour un observateur fixe et pour un observateur entraîné dans un mouvement de translation uniforme, de sorte que nous n'avons et ne pouvons avoir aucun moyen de discerner si nous sommes, oui ou non, emportés dans un pareil mouvement ». ( réf 11 page 306 et ( 3 ) ).

Ce principe était bien sûr essentiellement basé sur les résultats négatifs des expériences de cette époque sur l'éther.  La plus grande partie de la conférence est consacrée à la défense du nouveau principe et Henri Poincaré conclut : « Ainsi le principe de relativité a été dans ces derniers temps vaillamment défendu, mais l'énergie même de la défense prouve combien l'attaque était sérieuse ... Peut-être devrons nous construire toute une mécanique nouvelle que nous ne faisons qu'entrevoir, où l'inertie croissant avec la vitesse, la vitesse de la lumière deviendrait une limite infranchissable ». (réf 11, page 324).

C) La note à l'Académie des sciences de Paris (5 Juin 1905, publiée le 9 Juin 1905, réf 3).

Poincaré écrit à nouveau le principe de relativité et analyse le « changement de variables» présenté par Lorentz dans son mémorandum (réf 1).  Il simplifie la présentation de ce changement et lui donne son nom actuel : « Le point essentiel, établi par Lorentz, c'est que les équations de l'électromagnétisme ne sont pas altérées par une certaine transformation que j'appellerai du nom de Lorentz.. » (plus tard, en 1914, Lorentz corrigera cette affirmation : "je n'ai pas indiqué la transformation qui convient le mieux.  Cela a été fait par Poincaré et ensuite par M. Einstein et Minkowski."(réf 10, page 295))

Poincaré remarque que la théorie de la relativité implique l'existence d'ondes gravifiques » ou ondes gravitationnelles se déplaçant à la vitesse de la lumière.  Cependant ses recherches ultérieures sur ce sujet ne furent pas couronnées de succès.

Poincaré note enfin que la transformation de Lorentz et les transformations associées sont les éléments d'un « groupe » au sens mathématique du mot (aujourd'hui le groupe de Poincaré, dont celui de Lorentz est un sous-groupe).  Cela lui permet de donner la valeur du coefficient l utilisé par Lorentz dans sa transformation : ce coefficient est égal à l'unité.

Les groupes ont des invariants et Poincaré trouvera l'invariant de son groupe : la quantité L ²- c² T² où L représente l'intervalle de longueur et T l'intervalle de temps.  Quelques années plus tard Minkowski présentera ce même invariant sous la célèbre forme différentielle : c ² dt² - dx² - dy²- dz² = c² ds²

Le paramètre s est le " temps propre " , lequel étant un paramètre physique donné par les horloges de bord du véhicule étudié, doit évidemment avoir la même valeur dans tous les référentiels.

Il faut comprendre que le second temps, t', apparaissant dans la transformation de Lorentz a le même caractère physique que le premier, à cause de l'inexistence de l'éther et du temps absolu, et à cause de la parfaite symétrie de la transformation.  Poincaré avait déjà donné un sens physique à ce temps t' en synchronisant les horloges avec des signaux lumineux, grâce à l'invariance de la vitesse de la lumière (réf.4).

Il est essentiel de noter que la transformation de Lorentz est une conséquence directe du principe de relativité et n'exige pas l'invariance de la vitesse de la lumière (voir annexe).

D) Le dernier travail fondamental de Poincaré sur la relativité est son étude « sur la dynamique de l'électron » dans laquelle il démontre et développe les idées de sa note à l'Académie (réf. 5, Juillet 1905, publiée en Janvier 1906).

L'expression de la transformation du champ électromagnétique est impressionnante l'électromagnétisme apparaît comme la mariage de l'électrostatique et de la relativité.

La théorie de Lorentz et Poincaré conduit donc au caractère relatif de l'espace et du temps physiques, elle est en accord avec le principe de relativité, avec les équations de Maxwell non seulement dans le vide mais aussi ailleurs, avec les expériences sur l'éther (Fizeau, Airy, Michelson, etc.) et avec les résultats classiques de l'électromagnétisme tels qu'ils furent découverts par les pionniers : Coulomb, Ampère, Volta, Laplace, Gauss, Oersted, Faraday ... La théorie de la relativité restreinte était dès lors complète.

Pendant ce temps, Einstein prépare et publie son premier et plus célèbre travail sur la relativité : Zur Elektrodynamik der bewegten Körper (réf 6).  Ce travail fut présenté sans aucune référence et est pour cette raison considéré par certains auteurs comme une compilation des travaux précédents (réf 7). 1L'idée de base d'Einstein est l'invariance de la vitesse de la lumière (ce qui oblige les photons à avoir une masse nulle).

Einstein est conduit au principe de relativité.  Il obtient tous les résultats décrits par Poincaré.  Il mentionne même que les transformations de Lorentz et les transformations associées forment un groupe, mais ne fait aucun usage de cette propriété.

Einstein était-il au courant des travaux de Poincaré ? Ceci est une question difficile.

D'une part il écrit en 1955 dans une lettre à Carl Seelig:

« Il n' y a pas de doute que, si nous regardons son développement rétrospectivement, la théorie de la relativité restreinte était prête à être découverte en 1905.  Lorentz avait déjà observé que, pour l'analyse des équations de Maxwell, les transformations qui porteront plus tard son nom sont essentielles et Poincaré avait été encore plus loin.

En ce qui me concerne, je ne connaissais que les travaux importants de Lorentz de 1895 : La théorie électromagnétique de Maxwell et "Versuch einer theorie der elektrischen und optischen Erscheinungen in bewegten Körpern" mais je ne connaissais ni les travaux ultérieurs de Lorentz ni les investigations correspondantes de Poincaré.

Dans ce sens mon travail de 1905 était indépendant » (réf 8, page 11).

Mais d'autre part:

A) Le travail d'Einstein en 1905 sur la relativité contient les mêmes résultats que celui de Poincaré y compris la propriété de groupe pour les transformations de Lorentz et les transformations associées.  Cette notion de groupe mathématique était alors très nouvelle et pratiquement ignorée chez les physiciens, Einstein n'en fait aucun usage.

B) Einstein n'a évidemment pas pu utiliser le travail de Poincaré de Juillet 1905 pour écrire son propre texte, mais la Note à l'académie du 5 Juin 1905 est arrivée à Berne, à temps, le 12 ou le 13 Juin, et la lire faisait partie de son travail ordinaire.  On peut d'ailleurs remarquer qu'Einstein résumait régulièrement pour les Annalen der Physik les travaux de physique les plus intéressants, y compris ceux parus dans les comptes rendus de l'Académie des Sciences de Paris (voir par exemple la référence 18, avec entre autres l'analyse du travail de M. Ponsot, CR.140, S pages 1176-1179, 1905).

C) Selon ses amis Maurice Solovine et Carl Seelig, Einstein avait lu le livre de Poincaré La Science et l'hypothèse (pas de temps absolu, pas d'espace absolu, pas d'éther ... ) pendant les années 1902-1904.  Ce livre fut discuté à leur cercle de lecture « Académie Olympia » durant plusieurs semaines (réf. 8, pages 129 et 139 ; réf. 9, page VIII et réf. 17, page 30).

On avance parfois qu'il arrive que les découvertes soient faites par plusieurs personnes en même temps (en d'autres termes : Poincaré et Einstein pourraient bien avoir obtenu les mêmes résultats indépendamment).  Cependant même si ceci est souvent vrai dans les recherches ordinaires - l'exemple le plus frappant étant celui de Gray et de Bell déposant le même jour, à plusieurs centaines de kilomètres l'un de l'autre, leur brevet sur l'invention du téléphone - ce n'est jamais le cas pour les bouleversements de la science lesquels suscitent immédiatement l'opposition: Copernic était seul, Képler était seul, Galilée était seul, Darwin et Wallace étaient seuls, Pasteur était seul, Freud était seul et tous furent ou bien ignorés, ou bien même combattus et persécutés.

Néanmoins, même si le principe de relativité doit être appelé principe de Poincaré, et même si Einstein n'est pas le premier, nous lui devons non seulement la relativité générale de 1916 mais aussi une magnifique vulgarisation de la relativité restreinte.  Ceci est très heureux car la santé de Poincaré était mauvaise et il ne survécut guère à son travail de géant, il fut frappé du cancer en 1909 et mourut en 1912 à l'âge de 58 ans.

La mauvaise santé de Poincaré et l'absence de référence dans le travail d'Einstein sur la relativité en 1905 ne sont évidemment pas les seules raisons pour lesquelles Poincaré est si ignoré et Einstein si célèbre.

Si un grand physicien comme Paul Langevin (qui discuta des derniers développements de la Physique avec Poincaré, son ancien professeur, durant les semaines de leur voyage au congrès de Saint-Louis en 1904), si Langevin avait défendu Poincaré l'évidence aurait été immédiatement reconnue.

Si Poincaré avait eu la possibilité de publier dans un grand journal de physique, comme les Annalen der Physik d'Einstein, il aurait eu une grande audience.  Mais il ne trouva que le Rendiconti del Circolo Matematico di Palermo pour son travail majeur de Juillet 1905 ... un petit journal de mathématiques qui n'était pas connu parmi les physiciens.

Il peut sembler incroyable que Poincaré ait eu tant de mal à publier dans un journal de physique, mais les physiciens de cette époque refusaient de considérer que ce prodigieux mathématicien était aussi l'un des leurs.  Encore aujourd'hui, certains physiciens croient que le caractère physique des variables x' et t' de la transformation de Lorentz n'a pas été suffisamment souligné par l'auteur du principe de relativité ! (réf. 20).

Il faut dire que Poincaré joue de malchance, son travail Sur la dynamique de l'électron n'est pratiquement pas connu avant les années trente et entre-temps la science et le vocabulaire scientifique ont fantastiquement changés.  Tandis que, d'une traduction à l'autre, le texte d'Einstein est constamment réactualisé ... En conséquence la comparaison des deux textes est apparemment édifiante.  Le texte de Poincaré est difficile à lire et certains lecteurs en arrivent même à se demander si Poincaré à vraiment compris la relativité... Il faut attendre le tout récent travail d'un éminent physicien russe, l'académicien Anatoly Logunov, pour que Poincaré soit lui aussi traduit en langage scientifique moderne, en russe tout d'abord puis en anglais et en français (réf 16).  Alors tout devient clair, nul ne peut plus soutenir que Poincaré ne savait pas ce qu'il faisait ou qu'il n'avait pas vraiment compris...

Par dessus tout cela une histoire typiquement française : La plupart des professeurs d'Université du début du siècle étaient politiquement de gauche à cette époque de dures confrontations (affaire Dreyfus, séparation de l'Eglise et de l'Etat ... ). Ils refusèrent de soutenir Henri Poincaré assimilé à son cousin Raymond, l'un des chefs de la droite et le futur Président de la République ... De quelques bords qu'ils soient la passion politique des Gaulois, et les excès qui en résultent, ont toujours étonné les étrangers.

Henri Poincaré n'était pas homme à se mettre en avant.  Il avait attribué à Lorentz plus que sa part, ce qui fut loyalement refusé par celui-ci.  Il avait appelé « fonctions fuchsiennes », fonctions du professeur Fuchs, des fonctions pour lesquelles il avait fait plus des deux tiers du travail...

En fin de compte l'amitié de Lorentz le sauva.  En 1921, après le triomphe de l'éclipse de Soleil de 1919, le comité Nobel se réunit avec pour première pensée : « Nous devons donner le prix Nobel à Einstein pour la relativité ». Mais Lorentz, prix Nobel de physique 1902, proteste : « Ce n'est pas juste ! » et il publie la notice sur la vie de Poincaré qu'il avait écrite en 1914 (ré£ 10, page 298)... «Je n'ai pas établi le principe de relativité comme rigoureusement et universellement vrai.  Poincaré au contraire a obtenu une invariance parfaite des équations de l'électrodynamique et il a formulé le «postulat de relativité», termes qu'il a été le premier à employer ».

Embarrassé, le comité Nobel décide de prendre le temps de réfléchir et, après quelques mois, donne finalement le prix Nobel à Einstein mais pas pour la relativité... pour l'effet photoélectrique !

Ainsi, en dépit de sa modestie et de sa timidité, Henri Poincaré doit être considéré non seulement comme un excellent philosophe de la science et l'un des plus grand mathématiciens ; il est aussi un physicien de tout premier plan (électromagnétisme et radio, optique, fluorescence, théorie cinétique des gaz, théorie des quanta, etc.), le père du principe de relativité et le fondateur de la relativité restreinte.

(1) Pour ce principe et quelques autres réflexions philosophiques fondamentales, Galilée est considéré par les scientifiques comme l'un des pères fondateurs de la science moderne tandis que le public le connaît surtout à cause de son procès de 1633.  Notez cependant l'ironie et la chance historique : c'est parce qu'il était condamné à la résidence surveillée dans sa maison de campagne à Arcetri près de Florence, qu'il a trouvé le temps nécessaire à la réflexion philosophique.  Sinon il serait probablement resté le professeur très occupé et le polémiste ardent et parfois injuste qu'il avait été toute sa vie.

 (2) Au cours du vingtième siècle de nombreux physiciens reprocheront à Henri Poincaré de n'avoir pas condamné plus explicitement et plus définitivement la notion d'éther.  Mais cela n'était pas si évident et Einstein lui-même dira encore bien plus tard, en 1920, dans la conclusion de sa conférence de Leyde : « En résumant, nous pouvons dire : D'après la théorie de la relativité générale, l'espace est doué de propriétés physiques ; dans ce sens par conséquent un éther existe.  Selon la théorie de la relativité générale un espace sans éther est inconcevable, car non seulement la propagation de la lumière y serait impossible, mais il n'y aurait aucune possibilité d'existence pour les règles et les horloges, et par conséquent aussi pour les distances spatio-temporelles dans le sens de la physique.  Cet éther ne doit cependant pas être conçu comme étant doué de la propriété qui caractérise le mieux les milieux pondérables, c'est à dire comme constitué de parties pouvant être suivies dans le temps : la notion de mouvement ne doit pas lui être appliquée »(réf . 19).

(3) Il est étonnant que cette toute première expression du principe de relativité à son niveau véritable ne soit pas mentionnée en référence 12 par ailleurs très intéressante et bien documentée.  Je ne l'ai pas trouvée non plus en référence 13 en dépit de sa présence en référence 14 et aussi dans la fameuse Encyklopädie der mathematischen Wissenchaften (réf 15).

Références

 

1     Lorentz H.A. Electromagnetic phenomena in a system moving with any velocity less than that of light.  Proc.Royal Acad.  Amsterdam, 6, page 809, 1904.

2     Poincaré H. La Science et l'hypothèse.  Edition Flammarion, Paris, 1902.

3     Poincaré H. Sur la dynamique de l'électron.  Comptes rendus AcadSci.  Paris, 140, pages 1504-1508, 5 Juin 1905.

4     Poincaré H. La mesure du temps.  Revue de métaphysique et de morale. 6, pages 371384, 1898.

5     Poincaré H. Sur la dynamique de l'électron.  Rendiconti del Circolo Matematico di Palermo, 21, pages 129-175, reçu le 23 Juillet 1905, publié en Janvier 1906.

6     Einstein A. Zur Elektrodynamik der bewegten Körper.  Annalen der Physik, 17, pages 891-921, reçu le 30 Juin 1905, publié le 26 Septembre 1905.

7     Leveugle J. Poincaré et la relativité.  La Jaune et la Rouge, pages 3 1-5 1, Avril 1994.

8     Miller A.I. Albert Einstein's Special Theory of Relativity.  Ed.  Addison-Wesley Publishing Company Inc.  ReadingMass., 198 1.

9     Solovine M. Lettres à Maurice Solovine.  Ed.  Gauthier-Villars, Paris, 1956.

10   Lorentz H.A. Deux mémoires de Henri Poincaré dans la Physique mathématique.  Acta Matematica, 38, pages 293-308, 192 1.

1 1  Poincaré H. L'état actuel et l'avenir de la physique mathématique.  Bulletin des Sciences Mathématiques, 28, 2° série (réorganisé 39-1), pages 302-324, 1904.

12   Tonnelat M.A. Histoire du principe de relativité.  Ed.  Flammarion, Paris, 1971.

13   Ginzburg V.L. On the theory of relativity.  Ed.  Nauka, Moscow, 1979.

14   Bol'shaia Sovetskaia Entsiklopedia. Great Soviet Encyclopedia-A translation of the third edition.  Volume 18, Macmillan Inc., New-York, Collier Macmillan Publishers.  Relativity, Theory of, page 653, 1974.

15   Pauli W., Kottler F. Encyclopädie der mathematsichen Wissenchaften.Leipzig Verlag und Druck von B G Teubner.  Relativitätstheorie V-2, pages 545-546 (1904-1922)Gravitation und Relativitätstheorie VI-2-2, page 171 (1922-1934).

16   Logunov A. A. On the articles by Henri Poincaré: « On the dynamics of the electron » Publishing Dept of the Joint Institute for Nuclear Research, Dubna, 1995. Sur les articles de Henri Poincaré : « Sur la dynamique de l'électron ». Le texte fondateur de la Relativité en langue scientifique moderne.  Publication ONERA 2000-1, pages 1-48, 2000.

1 7  Merleau-Ponty J. Einstein.  Ed Flammarion ISBN, page 30, 1993.

1 8  Einstein A.Beiblâtter zu der Annalen der Physik. 29, N' 18, pages 952-953, 1905.

1 9  Einstein A. L'éther et la théorie de la relativité.  Conférence faîte à Leyde (Pays-Bas) le 5 Mai 1920.  Traduction en français par Maurice Solovine et M.A. Tonnelat dans: Albert Einstein, Réflexions sur l'électrodynamique, l'éther , la géométrie et la relativité.  Collection « Discours de la méthode », nouvelle édition, Gauthier-Villars éd. 55 Quai des Grands Augustins, Paris 6è, page 74,1972.

20   Darrigol 0.  Henri Poincaré 's criticisme of Fin de Siècle electrodynamics Studies in History and Philosophy of modem Physics, pages 1-4, April 1995.

 

Les références 3, 5 et 10 apparaissent aussi dans les "Oeuvres de Henri Poincaré",

respectivement tome 9, pages 489-493 ; tome 9, pages 494-550 et tome 11, page 247-261; Gauthier-Villars éditeur, Paris, 1956.

Annexe

La transformation de Lorentz

Recherchons la transformation de Lorentz le long de deux axes Ox et O'x' glissant l'un sur l'autre avec la vitesse relative constante V.

___________________________________________O'___________________________> x'                              

______________________O______OO'= V_____________________________________> x                                                                                                                                                                                            x

Afin d'obtenir une symétrie parfaite entre les deux référentiels retournons l'axe O'x'.

x'<_________________________________________O'________________

________________________O_____________________________________> x

L'homogénéité conduira à une transformation linéaire et si nous choisissons t = t' = 0 en O et O' quand ils se croisent, les transformations (x, t) ® (x', t') et (x', t')® (x, t) seront données comme suit avec huit constantes appropriées A à D'

 

(4)                                x' = Ax + Bt                     t' = Cx + Dt

                                    x = A'x' + B't'                   t = C'x' + D't'

Le principe de relativité et la symétrie conduisent à:

(5)             A = A'           B = B'          C = C'            D = D'

De plus en O' nous avons x' = 0 et x = Vt, donc x' = Ax + Bt entraîne AV + B = 0, de même x = Ax' + Bt' et t = Cx' + Dt' entraînent B = DV, et donc D = -A.

Enfin la cohérence exige:

(6)          x = Ax' + Bt' = A(Ax + Bt) + B(Cx + Dt) = (D' + CDV)X t = Cx' + Dt' = C(Ax + Bt) + D(Cx + Dt) ='(D' + CDV) t

donc D² + CDV = 1, soit: C = (1 - D²) / DV.

La transformation (x, t) -> (x', t') devient donc

(7)             x' = -Dx + DVt                   t' = [(l - D²) / DV]x + Dt

La seule inconnue restante, D, est une fonction de la vitesse V et peut être déterminée par la comparaison de plusieurs vitesses.

Retournons à nouveau O'x' et considérons trois axes Ox, O'x' et O"x" de même sens.

                                                                               __O"____________________________>x"                                                                     

                                                       OO"=V"t,         O'O" = V't                                                                                                           

____________________________________O'__________________________________>x'

                                                       OO' = Vt

__________________________O_____________________________________________>x

La relation (7) devient, avec le signe opposé pour x'

(8)             x' = D(x - Vt)                   t'= [(l - D ²) / DV]x + Dt

 

et pareillement, avec D' pour V' et D" pour V "(ce nouveau D' est indépendant de celui de (4)-(5), lequel n'est plus utilisé après (5)) :

(9)                    x"= 'D'(x'- V't');    t" = [(l - D'²)/D'V']x' + D't'

(10)                  x"= D"(x - V"t);    t" = [(l - D"²)/ D"V"]x + D"t

Eliminons alors x' et t' en (8) et (9), nous obtenons une autre expression de (10)

(11)               x"={DD'+[D'V'(D² - 1) / DV] }x - DD'(V + V')t

t"={[(D - DD'²) / D'V'] + [(D'- D² D') / DV]} x + { DD'+ [DV(D'²-1)  /D'V']} t

L'identification de (10) et de (11) conduit aux quatre égalités suivantes

(12)               D " = DD' + [D'V'(D²-1) / DV]

(13)              D"V "= DD'(V + V')

(14)               (1 - D"² ) / D"V"= [(D - DD'²) /D'V'] + [(D'- D²D') / DV]

(15)               D"= DD' + [DV(D'²- 1) / D'V'] 

Donc, avec (12) et (15):

16)                D"- DD' = D'V'(D²- 1) / DV = DV(D'² - 1) / D'V'

La dernière égalité permet de définir la quantité K par:

(17)               K=D² V² / (D ²-1) = D'²V'² / (D'² - 1)

 

            La quantité K à la même valeur pour deux vitesses arbitraires (et leur D correspondant), elle est donc constante pour toutes les vitesses.  D'autre part le cas V = 0 donne x = x' et t = t',

donc     D = 1 en (8), il nous faut donc choisir la solution positive de (17)

(18)                                     D= (1-V²/K)-1/2

On obtient ainsi, avec (8), la transformation (x, t)®(x', t) et Poincaré l'étend sans difficulté à la transformation générale (x, y, z, t) ® (x', y', z', t').

(19) x'=(x-Vt) (1-V²/K)-1/2 ; y'=y ; z'=z                      t'=[(t-(Vx/K)] (1-V²/K)-1/2

Il reste à déterminer la constante K qui donne la transformation (1) de Galilée si elle est infinie et la transformation de Lorentz ordinaire si K = c2.  Bien entendu ces deux transformations sont très voisines lorsque le rapport V/c est faible.

La constante K ne peut être négative (il deviendrait possible de remonter dans le temps) et sa racine carrée apparaît comme une vitesse limite indépassable.  Ceci est confirmé

par la racine carrée (1-V²/K)1/2 et aussi par la composition des vitesses déduite de (12) et (13):

(19)   V" = (V+V')/ [1 + (VV'/ K)]       soit avec ÖK = k

(19)    (k-V")/(k+V") = [(k-V)/(k+V)].[(k-V')/(k+v')]     

donc êV ê et êV' ê < k entraînent êV" ê < k.

Très naturellement Poincaré et Lorentz ont choisi K = c², ce qui s'accorde avec l'invariance de la vitesse de la lumière et avec la conservation des équations de Maxwell dans les référentiels inertiels.  On peut cependant remarquer que, si nécessaire, il reste possible que K soit très légèrement supérieur à c² . Les photons auraient alors une masse très petite mais non nulle, et leur vitesse, la vitesse de la lumière, serait une fonction très légèrement croissante de leur énergie et tendrait vers ÖK quand leur énergie augmenterait indéfiniment.

Fin de l'annexe
http://www-cosmosaf.iap.fr/Poincare.htm

 

25/09/2011

USA Astéroïdes : "Les informations militaires sur les astéroïdes ou météorites sont classifiées depuis juin 2009

Que nous cachent-ils depuis juin 2009 ?

Nibiru qui approche avec son cortège d'astéroïdes ?

Ne vous attendez donc pas à être avertis par la NASA ou les "merdias aux ordres"sur les chutes possibles d'astéroïdes ou de météorites, qui du reste sont déjà censurées dans le monde, comme celle qui serait tombée en Mauritanie et dont la presse ne parle pas !



Ils risquent de nous faire croire que ce sont des satellites qui tombent et dont curieusement, ils ne retrouvent pas la trace,  et ICI,  au lieu de nous dire que ce sont des météorites qui risquent de "frôler" ou de "percuter" la Terre.

Bizarre que la NASA réussisse à prédire où les navettes spatiales atterrissent pour aller récupérer les astronautes et qu'ils ne sachent pas nous dire où pourraient tomber les satellites, NON ? 

N'ignorez pas non plus, les chutes de satellites qui devraient se multiplier à cause des fortes explosions solaires, en cours et à venir, et qui devraient nous priver de tous les divers systèmes de télé-communications et d'électricité dans le monde, tel qu'annoncé depuis 2008. 

Nous avons donc 3 dangers supplémentaires qui pourraient nous toucher, sans que nous ne soyons prévenus :

1 - la chute de météorites,
2 - la chute des  22 000 débris spatiaux, et
3 - la chute des satellites.

Vous voici prévenus.

 

Dimanche 14 Juin 2009

juin 13th, 2009 Posted in Juin 2009
 
astreroïde

Un article de Leonard David publié le 10 juin 2009 sur Space.com s'étonne que l'armée américaine ait décidé de ne plus partager ses données sur les risques de rentrées atmosphériques d'objets célestes. Aucune explication n'est donnée sur les raisons de ce revirement : "Les informations militaires sur les astéroïdes sont désormais classifiées."

"La communauté scientifique bénéficiait depuis 15 ans des données recueillies par les satellites militaires américains, sur les objets naturels et météoritiques rentrant dans l'atmosphère terrestre, mais c'est maintenant terminé.

Une décision récente empêche désormais que ces informations soient divulguées. La principale mission de ces satellites consiste à détecter les tests nucléaires au sol, et à déterminer la nature des météorides ou bolides qui rentrent dans l'atmosphère. Il est toujours préférable de pouvoir faire la différence entre la rentrée d'un objet naturel et une déflagration atomique.

David Morrison, un scientifique du NEO (Near Earth Object) au AMES Research Center de la NASA, s'exprimant en son nom, regrette cette décision :

"C'est très regrettable, parce qu'il y avait là une véritable synergie... une excellente coopération. Ca nous permettait de contre-vérifier nos observations, et c'était un moyen irremplaçable de faire progresser nos connaissances. Nous pouvions également mieux préciser les coordonnées d'impacts éventuels."

Il ajoute : "La recherche scientifique s'en trouvera ralentie, et cette mesure restreindra nos possibilités de rassurer le public, qui parfois s'interroge sur des phénomènes spatiaux."

Depuis quelques décennies, les satellites militaires secrets avaient identifié des centaines de ces objets. Ces précieuses informations étaient rapidement diffusées, et les chercheurs s'intéressaient de près à toutes ces données.

L'avantage des satellites-espions était de couvrir les vastes étendues océaniques. Mais à présent les scientifiques ne peuvent plus compter sur cette ressource. Ils espèrent que la décision des militaires sera révisée." - Source

 

 

David Morrison

K. Wilson, membre de la liste UFO UpDates, estime que cette attitude de l'armée américaine n'est pas très rassurante : "Est-ce que ça ne vous parait pas excessif, ou du moins très douteux comme procédé ? Je me demande si les scientifiques militaires s'attendent à quelque chose et ont pris cette mesure pour préserver le secret avant que ça se passe.

Est-ce que ça pourrait être en rapport avec les ouragans solaires annoncés ? Ou bien l'arrivée d'un astéroïde géant ? A moins que ce soit pour cacher une flotte d'Ovnis..."

Compléments & Commentaires

Source : http://ovnis-usa.com/2009/06/14/dimanche-14-juin/