Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

08/11/2011

L'astéroide YU55 passera plus près de la Terre cette nuit selon les calculs de l'ingénieur Kyle Shilt!

Ne vous étonnez pas si depuis quelques jours les intempéries se multiplient dans le monde ou que des volcans se réveillent ou encore que nous ayons droit à de nouvelles catastrophes.


Quittez les bords de mer si vous le pouvez car avec les mensonges qui nous sont racontés par les officiels, on ne sait pas si cet astéroïde risque de frôler la terre ou soit de la percuter ou de tomber dans un océan provoquant des tsunamis.

 


Mardi 8 novembre 2011

YU55 passera plus près de la Terre selon les calculs de l'ingénieur Kyle Shilt!

Dernière minute!

Le gigantesque caillou, 2005 YU55, pèse près de 50 millions de tonnes et mesure plus de 400 mètres de diamètre. Dans la nuit de lundi à mardi GMT et dans la nuit de mardi à mercredi 00h28 pour la France, l'objet céleste va frôler la surface de la Terre.

1 - L'astéroïde 2005 YU55 coupera par deux fois l'orbite de la Terre et de la lune!
2 - Sa trajectoire serait plus proche qu'on veut bien nous le dire!

En entrant dans le champ gravitationnel de la Terre, l'astéroïde pourrait dérégler l'équilibre de notre planète comme le fait la Lune.

Mais il en est rien selon la Nasa??? qui affirme que les effets gravitationnels de 2005 YU55 ne seront pas perceptibles notamment sur les marées et les plaques tectoniques.

Etrange quand on sait l'influence des corps spaciaux! alors celui-ci est vraiment exceptionnel et bien le seul à n'avoir aucune influence? Et pourtant depuis le 7 novembre il semble que les séismes et les volcans s'agitent un peu plus que d'habitude!

Selon l'ingénieur Kyle Shilt les calculs de la Nasa comportent d'étranges erreurs et selon lui l'astéroïde passera bien plus prés qu'on veut bien nous le dire... 

Dans le même temps des exercices de grande ampleur organisés par la FEMA doivent se dérouler ce 9/11 (ce nombre ne vous rappelle rien? 11/9 et là?)

Les téléspectateurs pourront voir et entendre le message de test sur toutes les chaines de télé et station de radio américaine à travers les États-Unis, et ce, sans exception. Le message audio indiquera que l'alerte est un essai. Un graphique sur les écrans  rappellera également aux téléspectateurs que le message d'alerte n'est qu'un test.

 

Voici les détails concernant le test du système d'alerte d'urgence, qui sera mis en ouvre à l'échelle nationale pour la première fois:

QUAND: mercredi 9 novembre 2011 à 14 heures

COMBIEN DE TEMPS: 30 secondes

OÙ: Les 50 États et trois territoires américains.

TOUCHÉS: La radio et télévision, les systèmes de télévision par câble, radio satellite, les systèmes de télévision par satellite.

PS: C'est un peut bizarre que cette essai coïncide exactement avec le même jour que le passage de l'Astéroïde YU55, qui, disons le, doit passer plus près que prévu de la terre selon Weather-Tech.

EAS National TEST 11-9-11
http://www.youtube.com/watch?v=ny3ssr4qsQY&feature=player_embedded



Selon le site
Intel up les exercices doivent se dérouler autour d'une zone d'impact représentée par cette croix rouge sur Google Earth!

Si 2005 YU55 devait rentrer un jour en collision avec la Terre, les conséquences seraient colossales. L'objet céleste de la taille d'un porte-avion et qui se déplace à 18.000 kilomètres par heure tuerait des millions de personnes. Les scientifiques de l'agence spatiale américaine estiment que s'il percutait la terre, le choc dissiperait une énergie équivalente à une explosion nucléaire de 4.000 mégatonnes ou un tremblement de terre de magnitude 7. Selon les estimations de la Nasa cet impact creuserait un cratère de plus de 6 kilomètres de diamètre et de 2 kilomètres de profondeur.


Sources: Weather-Tech données scientifiques par Kyle Shilt ingénieur

             TVQC Jean-François Cloutier reporter

             The intel up

Auteur: David Jarry ©2011 pouB-calendrier-maya-completr  

"2012 un nouveau paradigme"

 http://www.2012un-nouveau-paradigme.com/article-yu55-pass...



22/10/2011

Explosions solaires : des risques sur les télécommunications ?

Que ferez-vous si demain si vous ne pouviez plus retirer votre argent des banques à cause des pannes électriques et informatiques et que vous ne puissez plus communiquer ne serait-ce qu'avec les vôtres ?

Posez-vous la question dès maintenant et préparez-vous à ces échéances inéluctables.

Le soleil devant intensifier ses éruptions et éruptions au cours des années 2011-2012-2013.

 

 

Info rédaction, publiée le 09 août 2011
 
 

http://www.lepouvoirmondial.com/media/00/02/3726326836.jpg

 

Une tempête magnétique provoquée par une série d'explosions solaires laisse craindre une forte perturbation des télécommunications.

Les deux grandes explosions survenues à la surface du soleil au cours de ces derniers jours pourraient bientôt dégrader le réseau des télécommunications. Selon Joseph Kunches, scientifique au Centre de Prévision Climatique Spatiale, une division de l'Administration Atmosphérique et Océanique Nationale des Etats-Unis (NOAA), la tempête magnétique, déclenchée par ces événements, "devrait bientôt se développer à un niveau modéré à fort". 

En vue d'autres tempêtes prévues dans les prochains mois, les scientifiques mettent ainsi en garde les utilisateurs de satellites, de télécommunications et d'équipements électriques contre d'éventuelles perturbations du réseau. La turbulence engendrée par le soleil peut en effet interférer dans le fonctionnement de ces appareils en particulier dans les zones proches des pôles.

Une série d'explosions sous haute surveillance


La première grande explosion solaire de cette semaine s'est produite le jeudi 4 août avec peu d'impacts, selon les scientifiques de la NOAA. Un deuxième choc de la magnétosphère a quant à lui, été enregistré vendredi avec une intensité plus forte que la précédente. Une troisième éruption est prévue pour ces prochains jours. "Nous devrons voir ce qui se passe. L'explosion pourrait exacerber les perturbations du champ magnétique de la Terre causées par la seconde tempête, ou ne rien faire du tout". a déclaré Joseph Kunches.

Les vents solaires, électriquement chargés, qui se sont propagés au cours du week-end dernier n'ont pas causé beaucoup de perturbations. Toutefois, les experts de la NOAA prévoient une future intensification de ces tempêtes jusqu'à un pic attendu pour 2013.

Quelques explosions ont rythmé l'activité du soleil cette année. L'une d'entre-elles, survenue le 14 février, s'est avérée être la plus puissante de ces quatre dernières années. De manière générale, les perturbations causées par l'activité solaire sont rares. Toutefois, leur impact sur la Terre représente un risque sérieux au regard des événements du passé.

Des perturbations aux lourdes conséquences

En 1989 notamment, une tempête solaire particulièrement puissante a répandu dans l'atmosphère terrestre une pluie de particules chargées, saturant le réseau électrique au Canada. Suite à cet incident, six millions de personnes sont restées dans le noir pendant plusieurs heures. Trente ans plus tôt, la plus grosse tempête solaire jamais enregistrée a affectée les bureaux de télégraphie du monde entier, provoquant des chocs électriques chez certains opérateurs tandis que des papiers prenaient feu.

Selon un rapport publié en 2008 par le Conseil de Recherche Nationale, une tempête de cette intensité causerait aujourd'hui des dégâts beaucoup plus graves dont le coût a été estimé à près de 2.000 milliards de dollars.

http://www.maxisciences.com/soleil/explosions-solaires-de...

 

Une mégatempête solaire pourrait endommager les satellites

Voilà ce qui nous attend en cas de mégatempête solaire Et c'est ce qui nous pend au nez pour bientôt.

Une mégatempête solaire pourrait endommager les satellites

Info rédaction, publiée le 21 septembre 2011
 

http://www.lepouvoirmondial.com/media/00/00/3633476076.jpg

 

Selon une étude qui vient d'être réalisée, les satellites bien que conçus pour résister aux explosions solaires pourraient ne pas être assez solides pour supporter une grosse tempête solaire.

Si l'atmosphère terrestre était frappée par une violente attaque d'énergie et de particules solaires, elle serait inondée d'un flot d'électrons de haute énergie atteignant presque la vitesse de la lumière, si l'on en croit une récente étude basée sur un modèle informatique. Or, ces travaux ont révélé qu'un tel scénario bloquerait totalement les satellites situés à basse altitude qui ne seraient pas en mesure de refonctionner avant des dizaines d'années. Selon le géophysicien Yuri Shprits, auteur principal de l'étude, la majeure partie des satellites actuellement en orbite seraient même définitivement perdus dans le cas où une violente tempête solaire surviendrait.

En effet, les chercheurs ont établi que si les satellites sont en mesure de faire face à des tempêtes solaires, ils ne pourraient supporter des mégatempêtes. Heureusement, à l'heure actuelle, aucune "précipitation" solaire de ce type n'a jamais été observée mais elles existent bel et bien, estiment les scientifiques. Celles-ci seraient composées d'électrons et de particules qui, propulsés par le Soleil, prendraient de la vitesse après avoir pénétré à l'intérieur de la ceinture de radiations de Van Allen qui contient une grande densité de particules énergétiques.

La simulation effectuée au cours de l'étude a pris en compte une tempête solaire supérieure à celle de 2003 baptisée Halloween et a démontré que si une accélération d'électrons est normalement impossible avec ce type de tempêtes, elle deviendrait possible avec une mégatempête qui franchirait ce rideau protecteur et aboutirait à une prise de vitesse des particules. Plusieurs années seraient alors nécessaires pour que la densité d'électrons recouvre son état initial.

Une longévité réduite d'un facteur dix

Or, protéger les satellites amenés à traverser ces zones serait à la fois très complexe et très cher. "Ce que nous avons conclu de nos calculs, c'est qu'une très forte tempête diminuerait la durée de vie d'un satellite en orbite terrestre basse d'un facteur de dix", a précisé Yuri Shprits. Il explique également que les électrons de haute énergie "pénétreraient le blindage, se déposeraient sur les semi-conducteurs où ils pourraient causer des surtensions électriques, endommageant les systèmes électroniques", rapporte le National Geographic. D'où un impact considérable sur leur fonctionnement et leur longévité. 

D'après l'étude, les satellites les plus affectés seraient ainsi les satellites météo, de communication et militaires, car la plupart d'entre eux passent à travers la ceinture intérieure de Van Allen.

http://www.maxisciences.com/temp%EAte-solaire/une-megatempete-solaire-pourrait-endommager-les-satellites_art17133.html

 

18/10/2011

Nous devons la théorie sur la relativité à un Français, Jules-Henri Poincaré - L'Escroquerie d'Einstein: la Relativité de Poincaré

Voilà comment on nous enfume depuis des décennies.

Pour quelles raisons légitimes un français ne devait-IL pas être reconnu comme étant le découvreur de la théorie de la relativité ?
Rendons à César ce qui appartient à César, ce qui n'enlève en rien les travaux d'Einstein.
 

L'Escroquerie d'Einstein : la Relativité de Poincaré
(Radio Courtoisie, 1991/05/08)
 

 
Scoop énorme : Albert Einstein aurait pompé toute la "Théorie de la Relativité" à un Chercheur-Mathématicien français !
Il s'appelle Jules-Henri Poincaré (1854-1912), cousin germain du Président français Raymond Poincaré, il aurait tout découvert, formalisé et publié juste avant son homologue apatride. Einstein n'aurait fait que le lire puis, après la mort de Poincaré en 1912, les mass média américains auraient lancé l'apatride comme on lance une vedette de la Star Academy.

Les explications par Dean Mamas, Docteur en physique nucléaire, américain d'origine grecque, militant pour la réhabilitation de Poincaré.

Date: Mercredi 8 Mai 1991.
Invité: Dean Mamas; présence de Roger Holeindre, Nicolas Portier & Jean-François Touzet.
Présentation: Serge de Beketch.
Emission: Le Libre Journal.
Source: Radio Courtoisie.
 
Quelques références complémentaires :

La Relativité, Poincaré et Einstein, Planck, Hilbert : Histoire véridique de la Théorie de la Relativité

Présentation de l'éditeur

" A l'aube du vingtième siècle, un jeune homme de vingt-six ans révolutionne la Physique malgré l'opposition de tous les vieux savants. " Depuis cent ans cette belle légende fait rêver bien des étudiants ravis de voir pour une fois un jeune l'emporter sur les vieux... Mais ce n'est qu'une image d'Epinal bien éloignée de la réalité. Il est vrai que la réalité est proprement incroyable. Il est aujourd'hui de plus en plus souvent reconnu que Henri Poincaré et Hendrik Antoon Lorentz sont les véritables fondateurs de la théorie de la Relativité et que l'" article fondateur " d'Albert Einstein, en 1905, est une compilation de leurs travaux. Mais on s'est longtemps demandé comment tout cela avait été possible. Il est probable que, dans une période normale, un tel secret partagé par tant de gens n'aurait pas tenu bien longtemps. Mais la " Belle Epoque " n'est pas une période normale, c'est une époque de nationalisme déchaîné dont il nous est difficile de nous faire une idée. Pour les scientifiques allemands de l'Université de Gtittingen il n'était pas pensable de laisser à un Néerlandais, et surtout à un Français, le bénéfice d'une découverte fondamentale sur laquelle ils travaillaient depuis des années ! Il fallait absolument que cette découverte revienne à l'Allemagne. Einstein n'est pas le vrai coupable, il n'est qu'un rouage dans une machination dont le principal responsable est le mathématicien David Hilbert qui jalousait Poincaré au-delà de toute raison et qui a réussi à entraîner dans cette occultation délibérée le physicien Max Planck et son journal scientifique les Annalen der Physik. Les savants français ont eu leur part de responsabilité. Peu d'entre eux ont lu et compris les travaux de Poincaré, aucun ne l'a défendu. Bien entendu ce bouleversement de l'histoire de la Science est très solidement étayé comme il se doit. Tous les documents nécessaires ont été soigneusement recherchés et traduits, et l'on va de surprise en surprise... " L'authentique historiographie brise sans ménagement les images d'Epinal ; elle remplace les stéréotypes et les préjugés par des faits réels, extraits patiemment des archives " (Emmanuel Leroy-Ladurie). Jules Leveugle a gardé de ses études scientifiques un intérêt constant pour l'histoire des sciences car " on ne comprend bien que ce dont on connaît l'histoire "... et la méthode scientifique ne consiste t-elle pas à remettre en question même ce qui paraît bien établi ?


Henri Poincaré et la relativité

http://fr.wikipedia.org/wiki/Henri_Poincar%C3%A9#Poincar.C3.A9_et_la_relativit.C3.A9


Poincaré et la Relativité

Christian Marchal 
Direction Scientifique Générale
Office National d'Etudes et de Recherches Aérospatiales
BP 72, 92322 Châtillon cedex, France
 
Document papier communiqué par G. Hoynant,
 mis sous forme informatique par J. Fric,
 vérifié par G.Hoynant

Avant-propos

En Avril 1994 la Jaune et la Rouge publia une étude de Jules Leveugle intitulée «Poincaré et la Relativité » (Réf 7), étude dans laquelle ce polytechnicien présente les documents qui soulignent la participation prépondérante de Henri Poincaré à la genèse de la Relativité.

Cette question a soulevé un grand intérêt et provoqué un abondant courrier, c'est pourquoi elle est abordée de nouveau avec ses récents développements et avec un point de vue plus large retraçant le lent cheminement de la pensée scientifique : la route n'était ni évidente ni facile.

Résumé :

Les équations électromagnétiques de Maxwell et les vieilles notions newtoniennes de temps absolu et d'espace absolu étaient contradictoires avec l'impossibilité de la détection du mouvement absolu de la Terre.

Cette situation conduisit Henri Poincaré à considérer que le temps absolu, l'espace absolu et « l'éther » correspondant sont artificiels et n'existent pas réellement.  Les modifications des systèmes de références inertiels ne suivent pas les règles de Galilée mais celles de la transformation de Lorentz, lesquelles peuvent être déduites du principe de relativité de Poincaré de 1904.

Malheureusement la santé de Poincaré était mauvaise ; il devint cancéreux en 1909 et mourut en 1912.  Il est heureux que son travail de pionnier ait été poursuivi par Einstein qui popularisa la Relativité.

Pour quelles raisons Poincaré est-il si ignoré et Einstein si célèbre?  Essentiellement à cause des divisions et des oppositions de la société française.  Les physiciens refusaient d'admettre que Poincaré, ce prodigieux mathématicien, était aussi l'un d'entre eux... et sa parenté avec son cousin germain Raymond Poincaré, homme politique de premier plan, n 'était pas faite pour calmer les esprits.

La théorie de la Relativité est le résultat d'une très longue maturation des connaissances et des idées de l'humanité confrontée aux propriétés de la matière, de l'énergie, de l'espace et du temps.

Commençons avec l'état de cette confrontation dans la seconde moitié du XIX' siècle.

Les cinq principaux éléments sont alors les suivants

1) La relativité galiléenne.

Pendant des siècles on a cru que la force était proportionnelle à la vitesse : vous poussez sur un objet et il se déplace, vous cessez de pousser et il s'arrête.  Il faut des observations difficiles et une réflexion poussée sur les frottements pour comprendre qu'en l'absence de force le mouvement reste rectiligne et uniforme (Galilée, Descartes) et que la force est proportionnelle à l'accélération (Newton).

Le motif réel de Galilée était la compréhension du mouvement orbital de la Terre celle-ci ne perd pas son atmosphère et ses océans le long de son orbite ! Galilée avait besoin de ce que nous appelons aujourd'hui la relativité galiléenne : « Une expérience de mécanique donne les mêmes résultats dans un laboratoire fixe et dans un laboratoire en mouvement rectiligne et uniforme », soit en termes pratiques : vous pouvez boire votre café comme d'habitude aussi longtemps que votre avion vole d'un mouvement rectiligne et uniforme sans être secoué par le vent ... (1)

2) Le mouvement de la Terre.

Copernic et Galilée n'avaient pas de preuves physiques du mouvement de la Terre et c'est pourquoi Copernic présentait son travail comme une hypothèse tandis que Galilée était plus affirmatif. Fort heureusement, au milieu du XIX° siècle, ce mouvement était fermement établi sur ses trois preuves classiques : l'aberration des étoiles (Bradley, 1727), la parallaxe des étoiles (Bessel, 1840) et le pendule de Foucault (1851).

 

3) Le temps absolu ou « newtonien ».

« Tempus absolutum verum et mathematicum... »

« Le temps absolu, vrai et mathématique, par sa nature même indépendant de toutes les autres grandeurs, coule uniformément et sera désigné par le mot durée.

Le temps relatif, apparent et vulgaire, est la mesure, plus ou moins précise, subjective et toute extérieure, de la durée par les mouvements des astres, dont on se sert habituellement au lieu du vrai temps, comme l'heure, le jour, le mois, l'année ». (Newton, Philosophia Naturalis Principia Mathematica, 2° édition, Cambridge, 1713).

A l'époque de Newton, et même deux siècles plus tard, aucune horloge n'était capable de révéler les petites différences liées aux effets relativistes.  Il était donc très naturel de supposer l'existence du « temps absolu », ce paramètre essentiel de tant de lois physiques, et la définition newtonienne apparaissait alors essentiellement comme un avertissement « attention, la rotation de la Terre n'est peut-être pas tout à fait régulière ».

4) L'espace euclidien absolu et la notion de force.

La loi de l'inertie : accélération = force / masse est valable seulement dans les référentiels « galiléens » ou « inertiels » qui ne tournent pas et dont les mouvements relatifs sont rectilignes et uniformes.

Dans la seconde moitié du XIX° siècle les géométries non-euclidiennes de Lobatchevsky, Bolyai et Riemann étaient considérées comme des curiosités mathématiques sans grand intérêt et chacun considérait l'espace physique comme euclidien.

Le fantastique succès de la théorie newtonienne de l'attraction universelle confortait toutes ces notions.  Cette théorie ne conduisait-elle pas à une description remarquablement précise des mouvements planétaires et n'avait-elle pas permis la découverte de Neptune (1846) après les longs calculs de Leverrier et d'Adams ?

En 1850, toutes les lois de la mécanique étaient en accord avec la relativité galiléenne, elles étaient conservées par les transformations ordinaires de référentiels galiléens, par exemple par l'expression classique:

(1)                    x1 = x - Vt   vitesse V constante du second référentiel par rapport au premier.

                        y1 = y ; z1=  z ; t1 = t: temps absolu.

 

5) Les équations de l'électromagnétisme (Maxwell 1864).

Les équations de Maxwell représentent un progrès majeur de la connaissance de la matière, sans doute un progrès aussi important que celui de la loi de l'attraction universelle.  Elles sont cependant la source des difficultés : elles ne sont pas conservées dans les transformations galiléennes des référentiels.

Considérons leur expression la plus simple dans le vide.  Le vecteur champ électrique E et le vecteur induction magnétique B sont liés par les quatre équations suivantes

(2) div E = 0 ; div B = 0 ; rot E  = - B /t ; rot B = m0e0E / t avec :

m0 = perméabilité magnétique du vide = 4p. 10-7  Henry par mètre.

e0 = permittivité du vide = 8,854 187 82  10-12Farad par mètre.

Les solutions les plus simples sont les ondes planes, par exemple celles se propageant dans la direction de Ox :

u = x - ct ; avec c = (m0e0) -1/2 = 299 792 458 m / s

 (3)               E = [ 0 , cf(u) , cg(u) ];                        B= [0 , - g(u) , f(u) ]

 f(u) et g(u) sont des fonctions continûment dérivables arbitraires.

Donc, dans le système de référence Oxyzt approprié dans lequel les équations (2) de Maxwell sont valables, les ondes planes se déplacent avec la vitesse c, la vitesse des ondes électromagnétiques.  Cette vitesse fut aussi reconnue comme la vitesse de la lumière après les expériences de Hertz sur les similitudes entre lumière et électromagnétisme.

Malheureusement la transformation galiléenne (1) ne conserve pas la vitesse c, nous devons donc choisir entre les deux possibilités suivantes :

A)           Ou bien les équations de Maxwell sont rigoureuses par rapport à un référentiel particulier Oxyzt et seulement approchées dans les référentiels en mouvement lent (comme ceux de nos laboratoires terrestres).

B)           Ou bien les équations de Maxwell sont rigoureuses pour tous les systèmes de références inertiels et la relativité peut être étendue de la mécanique à l'électricité et à l'optique.  Mais il y a un prix à payer : les notions de temps et d'espace absolus doivent être abandonnées car elles sont contradictoires avec l'invariance de la vitesse de la lumière.

Le temps absolu newtonien semblait si évident que l'hypothèse A fut immédiatement adoptée.  Le référentiel hypothétique Oxyzt prit une consistance concrète avec l'invention de «l'éther », milieu très léger et très subtil, censé jouer pour la lumière et l'électromagnétisme le rôle de l'air pour le son.

L'étape suivante était évidemment la recherche des propriétés de l'éther et la détermination du mouvement « absolu » de la Terre, c'est à dire de son mouvement par rapport à l'éther, par des expériences appropriées d'optique ou d'électromagnétisme.

L'expérience de Fizeau (mesure de la vitesse de la lumière dans un courant d'eau, 1851) et celle d'Airy (mesure de l'angle d'aberration dans un télescope plein d'eau, 1871) semblaient montrer un « entraînement partiel de l'éther » par les milieux transparents.

En utilisant toutes sortes d'idées et d'équipements, un grand nombre d'expérimentateurs (Trouton et Noble, Lodge, Kennedy et Thorndyke, etc.) essayèrent d'étudier les propriétés de l'éther et de déterminer le mouvement absolu de la Terre, mais sans succès.

Les expérimentateurs les plus célèbres sont Michelson et Morley.  Leur expérience (1887) fut incapable de détecter une anisotropie de la vitesse de la lumière en dépit d'une précision dix fois surabondante.

Il est heureux que le mouvement de la Terre ait été fermement établi dans l'esprit des scientifiques de ce siècle.  Deux siècles auparavant l'explication la plus simple aurait été : la Terre ne bouge pas...

Pendant que ces expériences étaient faites, les théoriciens obtenaient un certain nombre de résultats intéressants.

Lorentz et Fitzgerald notèrent qu'une contraction appropriée par le « vent d'éther » peut expliquer l'isotropie apparente de l'expérience de Michelson et Morley.

En 1887, Voigt obtint une transformation de coordonnées conservant les ondes planes et les ondes sphériques de Maxwell.

En 1895, Lorentz nota que le premier ordre de la transformation de Voigt conserve le premier ordre des équations de Maxwell.

Larmor donna le deuxième ordre un peu plus tard.

Dans son grand mémorandum de Mai 1904 (réf 1), Lorentz donna une extension de la transformation de Voigt préservant les équations de Maxwell dans le vide.

Les plus grands progrès sont dus au mathématicien, physicien et philosophe Henri Poincaré, qui était un ami de Lorentz.  Ils échangèrent de nombreuses lettres scientifiques à partir de 1895 et améliorèrent pas à pas leurs analyses.

Les progrès successifs dus à Poincaré sont les suivants

A)   Dans le livre La science et l'hypothèse (1902), pages 111, 245 et 246 (réf.2):

Il  n'y a pas d'espace absolu et nous ne concevons que des mouvements relatifs.

Il n'y a pas de temps absolu ; dire que deux durées sont égales, c'est une assertion qui n'a par elle-même aucun sens et qui n'en peut acquérir un que par convention.  Non seulement nous n'avons pas l'intuition directe de l'égalité de deux durées, mais nous n'avons même pas celle de la simultanéité de deux événements se produisant sur des théâtres différents.

Peu nous importe que l'éther existe réellement, c'est l'affaire des métaphysiciens ... un jour viendra sans doute où l'éther sera rejeté comme inutile ... Ces hypothèses ne jouent qu'un rôle secondaire.  On pourrait les sacrifier ; on ne le fait pas d'ordinaire parce que l'exposition y perdrait en clarté, mais cette raison est la seule. ( 2)

B) Le congrès scientifique mondial de Saint-Louis (Missouri, Septembre 1904).

Henri Poincaré est invité à présenter une conférence générale sur « L'état actuel et l'avenir de la Physique mathématique »(réf. 11).  Il ajoute audacieusement le « principe de relativité » au cinq principes classiques de la Physique :

« Le principe de relativité, d'après lequel les lois des phénomènes physiques doivent être les mêmes pour un observateur fixe et pour un observateur entraîné dans un mouvement de translation uniforme, de sorte que nous n'avons et ne pouvons avoir aucun moyen de discerner si nous sommes, oui ou non, emportés dans un pareil mouvement ». ( réf 11 page 306 et ( 3 ) ).

Ce principe était bien sûr essentiellement basé sur les résultats négatifs des expériences de cette époque sur l'éther.  La plus grande partie de la conférence est consacrée à la défense du nouveau principe et Henri Poincaré conclut : « Ainsi le principe de relativité a été dans ces derniers temps vaillamment défendu, mais l'énergie même de la défense prouve combien l'attaque était sérieuse ... Peut-être devrons nous construire toute une mécanique nouvelle que nous ne faisons qu'entrevoir, où l'inertie croissant avec la vitesse, la vitesse de la lumière deviendrait une limite infranchissable ». (réf 11, page 324).

C) La note à l'Académie des sciences de Paris (5 Juin 1905, publiée le 9 Juin 1905, réf 3).

Poincaré écrit à nouveau le principe de relativité et analyse le « changement de variables» présenté par Lorentz dans son mémorandum (réf 1).  Il simplifie la présentation de ce changement et lui donne son nom actuel : « Le point essentiel, établi par Lorentz, c'est que les équations de l'électromagnétisme ne sont pas altérées par une certaine transformation que j'appellerai du nom de Lorentz.. » (plus tard, en 1914, Lorentz corrigera cette affirmation : "je n'ai pas indiqué la transformation qui convient le mieux.  Cela a été fait par Poincaré et ensuite par M. Einstein et Minkowski."(réf 10, page 295))

Poincaré remarque que la théorie de la relativité implique l'existence d'ondes gravifiques » ou ondes gravitationnelles se déplaçant à la vitesse de la lumière.  Cependant ses recherches ultérieures sur ce sujet ne furent pas couronnées de succès.

Poincaré note enfin que la transformation de Lorentz et les transformations associées sont les éléments d'un « groupe » au sens mathématique du mot (aujourd'hui le groupe de Poincaré, dont celui de Lorentz est un sous-groupe).  Cela lui permet de donner la valeur du coefficient l utilisé par Lorentz dans sa transformation : ce coefficient est égal à l'unité.

Les groupes ont des invariants et Poincaré trouvera l'invariant de son groupe : la quantité L ²- c² T² où L représente l'intervalle de longueur et T l'intervalle de temps.  Quelques années plus tard Minkowski présentera ce même invariant sous la célèbre forme différentielle : c ² dt² - dx² - dy²- dz² = c² ds²

Le paramètre s est le " temps propre " , lequel étant un paramètre physique donné par les horloges de bord du véhicule étudié, doit évidemment avoir la même valeur dans tous les référentiels.

Il faut comprendre que le second temps, t', apparaissant dans la transformation de Lorentz a le même caractère physique que le premier, à cause de l'inexistence de l'éther et du temps absolu, et à cause de la parfaite symétrie de la transformation.  Poincaré avait déjà donné un sens physique à ce temps t' en synchronisant les horloges avec des signaux lumineux, grâce à l'invariance de la vitesse de la lumière (réf.4).

Il est essentiel de noter que la transformation de Lorentz est une conséquence directe du principe de relativité et n'exige pas l'invariance de la vitesse de la lumière (voir annexe).

D) Le dernier travail fondamental de Poincaré sur la relativité est son étude « sur la dynamique de l'électron » dans laquelle il démontre et développe les idées de sa note à l'Académie (réf. 5, Juillet 1905, publiée en Janvier 1906).

L'expression de la transformation du champ électromagnétique est impressionnante l'électromagnétisme apparaît comme la mariage de l'électrostatique et de la relativité.

La théorie de Lorentz et Poincaré conduit donc au caractère relatif de l'espace et du temps physiques, elle est en accord avec le principe de relativité, avec les équations de Maxwell non seulement dans le vide mais aussi ailleurs, avec les expériences sur l'éther (Fizeau, Airy, Michelson, etc.) et avec les résultats classiques de l'électromagnétisme tels qu'ils furent découverts par les pionniers : Coulomb, Ampère, Volta, Laplace, Gauss, Oersted, Faraday ... La théorie de la relativité restreinte était dès lors complète.

Pendant ce temps, Einstein prépare et publie son premier et plus célèbre travail sur la relativité : Zur Elektrodynamik der bewegten Körper (réf 6).  Ce travail fut présenté sans aucune référence et est pour cette raison considéré par certains auteurs comme une compilation des travaux précédents (réf 7). 1L'idée de base d'Einstein est l'invariance de la vitesse de la lumière (ce qui oblige les photons à avoir une masse nulle).

Einstein est conduit au principe de relativité.  Il obtient tous les résultats décrits par Poincaré.  Il mentionne même que les transformations de Lorentz et les transformations associées forment un groupe, mais ne fait aucun usage de cette propriété.

Einstein était-il au courant des travaux de Poincaré ? Ceci est une question difficile.

D'une part il écrit en 1955 dans une lettre à Carl Seelig:

« Il n' y a pas de doute que, si nous regardons son développement rétrospectivement, la théorie de la relativité restreinte était prête à être découverte en 1905.  Lorentz avait déjà observé que, pour l'analyse des équations de Maxwell, les transformations qui porteront plus tard son nom sont essentielles et Poincaré avait été encore plus loin.

En ce qui me concerne, je ne connaissais que les travaux importants de Lorentz de 1895 : La théorie électromagnétique de Maxwell et "Versuch einer theorie der elektrischen und optischen Erscheinungen in bewegten Körpern" mais je ne connaissais ni les travaux ultérieurs de Lorentz ni les investigations correspondantes de Poincaré.

Dans ce sens mon travail de 1905 était indépendant » (réf 8, page 11).

Mais d'autre part:

A) Le travail d'Einstein en 1905 sur la relativité contient les mêmes résultats que celui de Poincaré y compris la propriété de groupe pour les transformations de Lorentz et les transformations associées.  Cette notion de groupe mathématique était alors très nouvelle et pratiquement ignorée chez les physiciens, Einstein n'en fait aucun usage.

B) Einstein n'a évidemment pas pu utiliser le travail de Poincaré de Juillet 1905 pour écrire son propre texte, mais la Note à l'académie du 5 Juin 1905 est arrivée à Berne, à temps, le 12 ou le 13 Juin, et la lire faisait partie de son travail ordinaire.  On peut d'ailleurs remarquer qu'Einstein résumait régulièrement pour les Annalen der Physik les travaux de physique les plus intéressants, y compris ceux parus dans les comptes rendus de l'Académie des Sciences de Paris (voir par exemple la référence 18, avec entre autres l'analyse du travail de M. Ponsot, CR.140, S pages 1176-1179, 1905).

C) Selon ses amis Maurice Solovine et Carl Seelig, Einstein avait lu le livre de Poincaré La Science et l'hypothèse (pas de temps absolu, pas d'espace absolu, pas d'éther ... ) pendant les années 1902-1904.  Ce livre fut discuté à leur cercle de lecture « Académie Olympia » durant plusieurs semaines (réf. 8, pages 129 et 139 ; réf. 9, page VIII et réf. 17, page 30).

On avance parfois qu'il arrive que les découvertes soient faites par plusieurs personnes en même temps (en d'autres termes : Poincaré et Einstein pourraient bien avoir obtenu les mêmes résultats indépendamment).  Cependant même si ceci est souvent vrai dans les recherches ordinaires - l'exemple le plus frappant étant celui de Gray et de Bell déposant le même jour, à plusieurs centaines de kilomètres l'un de l'autre, leur brevet sur l'invention du téléphone - ce n'est jamais le cas pour les bouleversements de la science lesquels suscitent immédiatement l'opposition: Copernic était seul, Képler était seul, Galilée était seul, Darwin et Wallace étaient seuls, Pasteur était seul, Freud était seul et tous furent ou bien ignorés, ou bien même combattus et persécutés.

Néanmoins, même si le principe de relativité doit être appelé principe de Poincaré, et même si Einstein n'est pas le premier, nous lui devons non seulement la relativité générale de 1916 mais aussi une magnifique vulgarisation de la relativité restreinte.  Ceci est très heureux car la santé de Poincaré était mauvaise et il ne survécut guère à son travail de géant, il fut frappé du cancer en 1909 et mourut en 1912 à l'âge de 58 ans.

La mauvaise santé de Poincaré et l'absence de référence dans le travail d'Einstein sur la relativité en 1905 ne sont évidemment pas les seules raisons pour lesquelles Poincaré est si ignoré et Einstein si célèbre.

Si un grand physicien comme Paul Langevin (qui discuta des derniers développements de la Physique avec Poincaré, son ancien professeur, durant les semaines de leur voyage au congrès de Saint-Louis en 1904), si Langevin avait défendu Poincaré l'évidence aurait été immédiatement reconnue.

Si Poincaré avait eu la possibilité de publier dans un grand journal de physique, comme les Annalen der Physik d'Einstein, il aurait eu une grande audience.  Mais il ne trouva que le Rendiconti del Circolo Matematico di Palermo pour son travail majeur de Juillet 1905 ... un petit journal de mathématiques qui n'était pas connu parmi les physiciens.

Il peut sembler incroyable que Poincaré ait eu tant de mal à publier dans un journal de physique, mais les physiciens de cette époque refusaient de considérer que ce prodigieux mathématicien était aussi l'un des leurs.  Encore aujourd'hui, certains physiciens croient que le caractère physique des variables x' et t' de la transformation de Lorentz n'a pas été suffisamment souligné par l'auteur du principe de relativité ! (réf. 20).

Il faut dire que Poincaré joue de malchance, son travail Sur la dynamique de l'électron n'est pratiquement pas connu avant les années trente et entre-temps la science et le vocabulaire scientifique ont fantastiquement changés.  Tandis que, d'une traduction à l'autre, le texte d'Einstein est constamment réactualisé ... En conséquence la comparaison des deux textes est apparemment édifiante.  Le texte de Poincaré est difficile à lire et certains lecteurs en arrivent même à se demander si Poincaré à vraiment compris la relativité... Il faut attendre le tout récent travail d'un éminent physicien russe, l'académicien Anatoly Logunov, pour que Poincaré soit lui aussi traduit en langage scientifique moderne, en russe tout d'abord puis en anglais et en français (réf 16).  Alors tout devient clair, nul ne peut plus soutenir que Poincaré ne savait pas ce qu'il faisait ou qu'il n'avait pas vraiment compris...

Par dessus tout cela une histoire typiquement française : La plupart des professeurs d'Université du début du siècle étaient politiquement de gauche à cette époque de dures confrontations (affaire Dreyfus, séparation de l'Eglise et de l'Etat ... ). Ils refusèrent de soutenir Henri Poincaré assimilé à son cousin Raymond, l'un des chefs de la droite et le futur Président de la République ... De quelques bords qu'ils soient la passion politique des Gaulois, et les excès qui en résultent, ont toujours étonné les étrangers.

Henri Poincaré n'était pas homme à se mettre en avant.  Il avait attribué à Lorentz plus que sa part, ce qui fut loyalement refusé par celui-ci.  Il avait appelé « fonctions fuchsiennes », fonctions du professeur Fuchs, des fonctions pour lesquelles il avait fait plus des deux tiers du travail...

En fin de compte l'amitié de Lorentz le sauva.  En 1921, après le triomphe de l'éclipse de Soleil de 1919, le comité Nobel se réunit avec pour première pensée : « Nous devons donner le prix Nobel à Einstein pour la relativité ». Mais Lorentz, prix Nobel de physique 1902, proteste : « Ce n'est pas juste ! » et il publie la notice sur la vie de Poincaré qu'il avait écrite en 1914 (ré£ 10, page 298)... «Je n'ai pas établi le principe de relativité comme rigoureusement et universellement vrai.  Poincaré au contraire a obtenu une invariance parfaite des équations de l'électrodynamique et il a formulé le «postulat de relativité», termes qu'il a été le premier à employer ».

Embarrassé, le comité Nobel décide de prendre le temps de réfléchir et, après quelques mois, donne finalement le prix Nobel à Einstein mais pas pour la relativité... pour l'effet photoélectrique !

Ainsi, en dépit de sa modestie et de sa timidité, Henri Poincaré doit être considéré non seulement comme un excellent philosophe de la science et l'un des plus grand mathématiciens ; il est aussi un physicien de tout premier plan (électromagnétisme et radio, optique, fluorescence, théorie cinétique des gaz, théorie des quanta, etc.), le père du principe de relativité et le fondateur de la relativité restreinte.

(1) Pour ce principe et quelques autres réflexions philosophiques fondamentales, Galilée est considéré par les scientifiques comme l'un des pères fondateurs de la science moderne tandis que le public le connaît surtout à cause de son procès de 1633.  Notez cependant l'ironie et la chance historique : c'est parce qu'il était condamné à la résidence surveillée dans sa maison de campagne à Arcetri près de Florence, qu'il a trouvé le temps nécessaire à la réflexion philosophique.  Sinon il serait probablement resté le professeur très occupé et le polémiste ardent et parfois injuste qu'il avait été toute sa vie.

 (2) Au cours du vingtième siècle de nombreux physiciens reprocheront à Henri Poincaré de n'avoir pas condamné plus explicitement et plus définitivement la notion d'éther.  Mais cela n'était pas si évident et Einstein lui-même dira encore bien plus tard, en 1920, dans la conclusion de sa conférence de Leyde : « En résumant, nous pouvons dire : D'après la théorie de la relativité générale, l'espace est doué de propriétés physiques ; dans ce sens par conséquent un éther existe.  Selon la théorie de la relativité générale un espace sans éther est inconcevable, car non seulement la propagation de la lumière y serait impossible, mais il n'y aurait aucune possibilité d'existence pour les règles et les horloges, et par conséquent aussi pour les distances spatio-temporelles dans le sens de la physique.  Cet éther ne doit cependant pas être conçu comme étant doué de la propriété qui caractérise le mieux les milieux pondérables, c'est à dire comme constitué de parties pouvant être suivies dans le temps : la notion de mouvement ne doit pas lui être appliquée »(réf . 19).

(3) Il est étonnant que cette toute première expression du principe de relativité à son niveau véritable ne soit pas mentionnée en référence 12 par ailleurs très intéressante et bien documentée.  Je ne l'ai pas trouvée non plus en référence 13 en dépit de sa présence en référence 14 et aussi dans la fameuse Encyklopädie der mathematischen Wissenchaften (réf 15).

Références

 

1     Lorentz H.A. Electromagnetic phenomena in a system moving with any velocity less than that of light.  Proc.Royal Acad.  Amsterdam, 6, page 809, 1904.

2     Poincaré H. La Science et l'hypothèse.  Edition Flammarion, Paris, 1902.

3     Poincaré H. Sur la dynamique de l'électron.  Comptes rendus AcadSci.  Paris, 140, pages 1504-1508, 5 Juin 1905.

4     Poincaré H. La mesure du temps.  Revue de métaphysique et de morale. 6, pages 371384, 1898.

5     Poincaré H. Sur la dynamique de l'électron.  Rendiconti del Circolo Matematico di Palermo, 21, pages 129-175, reçu le 23 Juillet 1905, publié en Janvier 1906.

6     Einstein A. Zur Elektrodynamik der bewegten Körper.  Annalen der Physik, 17, pages 891-921, reçu le 30 Juin 1905, publié le 26 Septembre 1905.

7     Leveugle J. Poincaré et la relativité.  La Jaune et la Rouge, pages 3 1-5 1, Avril 1994.

8     Miller A.I. Albert Einstein's Special Theory of Relativity.  Ed.  Addison-Wesley Publishing Company Inc.  ReadingMass., 198 1.

9     Solovine M. Lettres à Maurice Solovine.  Ed.  Gauthier-Villars, Paris, 1956.

10   Lorentz H.A. Deux mémoires de Henri Poincaré dans la Physique mathématique.  Acta Matematica, 38, pages 293-308, 192 1.

1 1  Poincaré H. L'état actuel et l'avenir de la physique mathématique.  Bulletin des Sciences Mathématiques, 28, 2° série (réorganisé 39-1), pages 302-324, 1904.

12   Tonnelat M.A. Histoire du principe de relativité.  Ed.  Flammarion, Paris, 1971.

13   Ginzburg V.L. On the theory of relativity.  Ed.  Nauka, Moscow, 1979.

14   Bol'shaia Sovetskaia Entsiklopedia. Great Soviet Encyclopedia-A translation of the third edition.  Volume 18, Macmillan Inc., New-York, Collier Macmillan Publishers.  Relativity, Theory of, page 653, 1974.

15   Pauli W., Kottler F. Encyclopädie der mathematsichen Wissenchaften.Leipzig Verlag und Druck von B G Teubner.  Relativitätstheorie V-2, pages 545-546 (1904-1922)Gravitation und Relativitätstheorie VI-2-2, page 171 (1922-1934).

16   Logunov A. A. On the articles by Henri Poincaré: « On the dynamics of the electron » Publishing Dept of the Joint Institute for Nuclear Research, Dubna, 1995. Sur les articles de Henri Poincaré : « Sur la dynamique de l'électron ». Le texte fondateur de la Relativité en langue scientifique moderne.  Publication ONERA 2000-1, pages 1-48, 2000.

1 7  Merleau-Ponty J. Einstein.  Ed Flammarion ISBN, page 30, 1993.

1 8  Einstein A.Beiblâtter zu der Annalen der Physik. 29, N' 18, pages 952-953, 1905.

1 9  Einstein A. L'éther et la théorie de la relativité.  Conférence faîte à Leyde (Pays-Bas) le 5 Mai 1920.  Traduction en français par Maurice Solovine et M.A. Tonnelat dans: Albert Einstein, Réflexions sur l'électrodynamique, l'éther , la géométrie et la relativité.  Collection « Discours de la méthode », nouvelle édition, Gauthier-Villars éd. 55 Quai des Grands Augustins, Paris 6è, page 74,1972.

20   Darrigol 0.  Henri Poincaré 's criticisme of Fin de Siècle electrodynamics Studies in History and Philosophy of modem Physics, pages 1-4, April 1995.

 

Les références 3, 5 et 10 apparaissent aussi dans les "Oeuvres de Henri Poincaré",

respectivement tome 9, pages 489-493 ; tome 9, pages 494-550 et tome 11, page 247-261; Gauthier-Villars éditeur, Paris, 1956.

Annexe

La transformation de Lorentz

Recherchons la transformation de Lorentz le long de deux axes Ox et O'x' glissant l'un sur l'autre avec la vitesse relative constante V.

___________________________________________O'___________________________> x'                              

______________________O______OO'= V_____________________________________> x                                                                                                                                                                                            x

Afin d'obtenir une symétrie parfaite entre les deux référentiels retournons l'axe O'x'.

x'<_________________________________________O'________________

________________________O_____________________________________> x

L'homogénéité conduira à une transformation linéaire et si nous choisissons t = t' = 0 en O et O' quand ils se croisent, les transformations (x, t) ® (x', t') et (x', t')® (x, t) seront données comme suit avec huit constantes appropriées A à D'

 

(4)                                x' = Ax + Bt                     t' = Cx + Dt

                                    x = A'x' + B't'                   t = C'x' + D't'

Le principe de relativité et la symétrie conduisent à:

(5)             A = A'           B = B'          C = C'            D = D'

De plus en O' nous avons x' = 0 et x = Vt, donc x' = Ax + Bt entraîne AV + B = 0, de même x = Ax' + Bt' et t = Cx' + Dt' entraînent B = DV, et donc D = -A.

Enfin la cohérence exige:

(6)          x = Ax' + Bt' = A(Ax + Bt) + B(Cx + Dt) = (D' + CDV)X t = Cx' + Dt' = C(Ax + Bt) + D(Cx + Dt) ='(D' + CDV) t

donc D² + CDV = 1, soit: C = (1 - D²) / DV.

La transformation (x, t) -> (x', t') devient donc

(7)             x' = -Dx + DVt                   t' = [(l - D²) / DV]x + Dt

La seule inconnue restante, D, est une fonction de la vitesse V et peut être déterminée par la comparaison de plusieurs vitesses.

Retournons à nouveau O'x' et considérons trois axes Ox, O'x' et O"x" de même sens.

                                                                               __O"____________________________>x"                                                                     

                                                       OO"=V"t,         O'O" = V't                                                                                                           

____________________________________O'__________________________________>x'

                                                       OO' = Vt

__________________________O_____________________________________________>x

La relation (7) devient, avec le signe opposé pour x'

(8)             x' = D(x - Vt)                   t'= [(l - D ²) / DV]x + Dt

 

et pareillement, avec D' pour V' et D" pour V "(ce nouveau D' est indépendant de celui de (4)-(5), lequel n'est plus utilisé après (5)) :

(9)                    x"= 'D'(x'- V't');    t" = [(l - D'²)/D'V']x' + D't'

(10)                  x"= D"(x - V"t);    t" = [(l - D"²)/ D"V"]x + D"t

Eliminons alors x' et t' en (8) et (9), nous obtenons une autre expression de (10)

(11)               x"={DD'+[D'V'(D² - 1) / DV] }x - DD'(V + V')t

t"={[(D - DD'²) / D'V'] + [(D'- D² D') / DV]} x + { DD'+ [DV(D'²-1)  /D'V']} t

L'identification de (10) et de (11) conduit aux quatre égalités suivantes

(12)               D " = DD' + [D'V'(D²-1) / DV]

(13)              D"V "= DD'(V + V')

(14)               (1 - D"² ) / D"V"= [(D - DD'²) /D'V'] + [(D'- D²D') / DV]

(15)               D"= DD' + [DV(D'²- 1) / D'V'] 

Donc, avec (12) et (15):

16)                D"- DD' = D'V'(D²- 1) / DV = DV(D'² - 1) / D'V'

La dernière égalité permet de définir la quantité K par:

(17)               K=D² V² / (D ²-1) = D'²V'² / (D'² - 1)

 

            La quantité K à la même valeur pour deux vitesses arbitraires (et leur D correspondant), elle est donc constante pour toutes les vitesses.  D'autre part le cas V = 0 donne x = x' et t = t',

donc     D = 1 en (8), il nous faut donc choisir la solution positive de (17)

(18)                                     D= (1-V²/K)-1/2

On obtient ainsi, avec (8), la transformation (x, t)®(x', t) et Poincaré l'étend sans difficulté à la transformation générale (x, y, z, t) ® (x', y', z', t').

(19) x'=(x-Vt) (1-V²/K)-1/2 ; y'=y ; z'=z                      t'=[(t-(Vx/K)] (1-V²/K)-1/2

Il reste à déterminer la constante K qui donne la transformation (1) de Galilée si elle est infinie et la transformation de Lorentz ordinaire si K = c2.  Bien entendu ces deux transformations sont très voisines lorsque le rapport V/c est faible.

La constante K ne peut être négative (il deviendrait possible de remonter dans le temps) et sa racine carrée apparaît comme une vitesse limite indépassable.  Ceci est confirmé

par la racine carrée (1-V²/K)1/2 et aussi par la composition des vitesses déduite de (12) et (13):

(19)   V" = (V+V')/ [1 + (VV'/ K)]       soit avec ÖK = k

(19)    (k-V")/(k+V") = [(k-V)/(k+V)].[(k-V')/(k+v')]     

donc êV ê et êV' ê < k entraînent êV" ê < k.

Très naturellement Poincaré et Lorentz ont choisi K = c², ce qui s'accorde avec l'invariance de la vitesse de la lumière et avec la conservation des équations de Maxwell dans les référentiels inertiels.  On peut cependant remarquer que, si nécessaire, il reste possible que K soit très légèrement supérieur à c² . Les photons auraient alors une masse très petite mais non nulle, et leur vitesse, la vitesse de la lumière, serait une fonction très légèrement croissante de leur énergie et tendrait vers ÖK quand leur énergie augmenterait indéfiniment.

Fin de l'annexe
http://www-cosmosaf.iap.fr/Poincare.htm

 

25/09/2011

Calendrier Maya : Précisions de Carl Johan Calleman sur la convergence cosmique entre le 23 au 26 Septembre 2011,

 Ne serait-il pas temps de nous y mettre, TOUS ENSEMBLE ?

Il n'est pas trop tard !


Carl Johan Calleman est le spécialiste du Calendrier Maya, qui se termine le 28 octobre prochain. Voici son tout dernier message :

« Comme nous le savons, le monde entre actuellement dans une période de chaos très important ainsi que l’avaient révélé plusieurs prophéties anciennes venant du monde Chrétien, des Indiens Hopi, des Mayas et du monde Musulman.

Il n’y aura pas de retour à la « normalité ». Le monde actuel, fondé sur des organisations hiérarchiques et le principe de dualité, est en train de changer.

Les prophéties parlent aussi de la naissance possible d’un monde nouveau qui succédera au monde actuel et sera le résultat du changement d’une partie importante de la population mondiale.

Un tel changement ne se fera pas de façon automatique. Chacun de nous ayant son libre arbitre, ce changement devra être fondé sur la responsabilité personnelle de chacun et l’engagement de participer au basculement vers une nouvelle façon d’être: la conscience unitaire. Voilà quels sont les principes sous-jacents de la Convergence Cosmique, événement qui sera célébré dans le monde entier du 23 au 26 Septembre 2011, soit individuellement, soit en groupes petits ou grands, selon le choix de chacun. Cet événement s’adresse à tous quelque soit la race, la religion, la nationalité ou le sexe.

Le choix de la date de cet événement résulte de la convergence de deux phénomènes de nature cosmique.

1 - Le premier se trouve dans le calendrier Maya, selon lequel il s’agit de profiter d’une des grandes occasions de prendre l’engagement d’adopter une nouvelle façon d’être, fondée sur une conscience unitaire. Cet engagement est en quelque sorte un passeport pour le monde nouveau de 2012.

2 - Le deuxième phénomène est le passage de la comète Elenin entre la Terre et le Soleil. La signification de ce phénomène donne lieu à des interprétations diverses. On retiendra ici que ce passage va fournir à l’humanité l’occasion d’une expérience accrue de son origine cosmique.

Les organisateurs de la Convergence Cosmique et leurs participants pourront créer, comme ils le souhaitent, des évènements pour la célébrer à condition que ces événements prennent en compte l’engagement de chacun de participer au basculement vers la conscience unitaire. Il sera demandé aux participants d’exprimer cet engagement par deux déclarations:

1/ se laisser guider en permanence dans sa vie par son(ses) guide(s) divin(s) plutôt que par son ego,

2/ abandonner son « droit » de réagir par la négativité à la négativité des autres ou par la violence à la violence des autres.

Sur la base de ces déclarations, plusieurs pratiques spirituelles, comme des prières ou des méditations, pourront être développées à l’occasion de cet événement. Il est important que les conséquences résultant des deux déclarations soient reconnues par ceux qui ont choisi de les faire et ancrées profondément en eux. Peu importe les événements qui auront lieu d’ici là dans le monde, le cosmos nous invite à prendre position en faveur d’un changement radical à travers le monde, en commençant par nous-mêmes.

Ou comme Mahatma Gandhi le disait: « Soyez le changement que vous voulez voir dans le monde! »

Aidez à faire que le basculement vers un monde nouveau devienne réalité. Encouragez chacun sur cette planète à participer avec solennité, mais aussi avec joie, à la transformation de notre monde. Aidez à diffuser ce message sous toutes les formes possibles. Facilitez les rassemblements, qu’ils soient importants ou non, où nous pourrons nous interroger pour savoir si nous voulons solennellement nous engager à changer et, ce faisant, aider à la création d’un nouveau monde. »

Carl Johan Calleman

21  SEPT 2011

http://eveil-a-soi.com/convergence-cosmique/precisions-de...