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ABSTRACT
A recent analysis of a Lunar Laser Ranging (LLR) data record spanning 38.7 yr re-
vealed an anomalous increase of the eccentricity e of the lunar orbit amounting to
ėmeas = (9 ± 3) × 10−12 yr−1. The present-day models of the dissipative phenomena
occurring in the interiors of both the Earth and the Moon are not able to explain it.
In this paper, we examine several dynamical effects, not modeled in the data analysis,
in the framework of long-range modified models of gravity and of the standard New-
tonian/Einsteinian paradigm. It turns out that none of them can accommodate ėmeas.
Many of them do not even induce long-term changes in e; other models do, instead,
yield such an effect, but the resulting magnitudes are in disagreement with ėmeas. In
particular, the general relativistic gravitomagnetic acceleration of the Moon due to
the Earth’s angular momentum has the right order of magnitude, but the resulting
Lense-Thirring secular effect for the eccentricity vanishes. A potentially viable Newto-
nian candidate would be a trans-Plutonian massive object (Planet X/Nemesis/Tyche)
since it, actually, would affect e with a non-vanishing long-term variation. On the
other hand, the values for the physical and orbital parameters of such a hypothetical
body required to obtain at least the right order of magnitude for ė are completely
unrealistic: suffices it to say that an Earth-sized planet would be at 30 au, while a
jovian mass would be at 200 au. Thus, the issue of finding a satisfactorily explanation
for the anomalous behavior of the Moon’s eccentricity remains open.

Key words: gravitation-Celestial mechanics-ephemerides-Moon-planets and satel-
lites: general

1 INTRODUCTION

Anderson & Nieto (2010), in a review of some astrometric
anomalies recently detected in the solar system by several
independent groups, mentioned also an anomalous secular
increase of the eccentricity1 e of the orbit of the Moon

ėmeas = (9± 3)× 10−12 yr−1 (1)

based on an analysis of a long LLR data record spanning
38.7 yr (16 March 1970-22 November 2008) performed by
Williams & Boggs (2009) with the suite of accurate dynam-
ical force models of the DE421 ephemerides (Folkner et al.
2008; Williams et al. 2008) including all relevant Newto-
nian and Einsteinian effects. Notice that eq. (1) is sta-
tistically significant at a 3σ−level. The first presentation

⋆ E-mail: lorenzo.iorio@libero.it
1 It is a dimensionless numerical parameter for which 0 ≤ e < 1
holds. It determines the shape of the Keplerian ellipse: e = 0
corresponds to a circle, while values close to unity yield highly
elongated orbits.

of such an effect appeared in Williams et al. (2001), in
which an extensive discussion of the state-of-the-art in
modeling the tidal dissipation in both the Earth and the
Moon was given. Later, Williams & Dickey (2003), relying
upon Williams et al. (2001), yielded an anomalous eccen-
tricity rate as large as ėmeas = (1.6 ± 0.5) × 10−11 yr−1.
Anderson & Nieto (2010) commented that eq. (1) is not
compatible with present, standard knowledge of dissipative
processes in the interiors of both the Earth and Moon, which
were, actually, modeled by Williams & Boggs (2009). The
relevant physical and osculating orbital parameters of the
Earth and the Moon are reported in Table 1.

In this paper we look for a possible candidate for ex-
plaining such an anomaly in terms of both Newtonian and
non-Newtonian gravitational dynamical effects, general rel-
ativistic or not.

To this aim, let us make the following, preliminary re-
marks. Naive, dimensional evaluations of the effect caused
on e by an additional anomalous acceleration A can be made

http://arxiv.org/abs/1102.0212v6
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Table 1. Relevant physical and osculating orbital parameters of the Earth-Moon system. a is the semimajor axis. e is the eccentricity.
The inclination I is referred to the mean ecliptic at J2000.0. Ω is the longitude of the ascending node and is referred to the mean equinox
and ecliptic at J2000.0. ω is the argument of pericenter. G is the Newtonian gravitational constant. The masses of the Earth and the
Moon are M and m, respectively. The orbital parameters of the Moon were retrieved from the WEB interface HORIZONS (Author: J.
Giorgini. Site Manager: D. K. Yeomans. Webmaster: A. B. Chamberlin), by JPL, NASA, at the epoch J2000.0.

a (m) e I (deg) Ω (deg) ω (deg) GM (m3 s−2) m/M

3.81219 × 108 0.0647 5.24 123.98 −51.86 3.98600 × 1014 0.012

by noticing that

ė ≈ A

na
, (2)

with

na = 1.0× 103 m s−1 = 3.2× 1010 m yr−1 (3)

for the geocentric orbit of the Moon. In it, a is the orbital
semimajor axis, while n

.
=

√

µ/a3 is the Keplerian mean
motion in which µ

.
= GM(1+m/M) is the gravitational pa-

rameter of the Earth-Moon system: G is the Newtonian con-
stant of gravitation. It turns out that an extra-acceleration
as large as

A ≈ 3× 10−16 m s−2 = 0.3 m yr−2 (4)

would satisfy eq. (1). In fact, a mere order-of-magnitude
analysis based on eq. (2) would be insufficient to draw mean-
ingful conclusions: finding simply that this or that dynamical
effect induces an extra-acceleration of the right order of mag-
nitude may be highly misleading. Indeed, exact calculations
of the secular variation of e caused by such putative promis-
ing candidate extra-accelerations A must be performed with
standard perturbative techniques in order to check if they,
actually, cause an averaged non-zero change of the eccen-
tricity. Moreover, also in such potentially favorable cases
caution is still in order. Indeed, it may well happen, in prin-
ciple, that the resulting analytical expression for 〈ė〉 retains
multiplicative factors2 1/ek, k = 1, 2, 3, ... or ek, k = 1, 2, 3...
which would notably alter the size of the found non-zero sec-
ular change of the eccentricity with respect to the expected
values according to eq. (2).

The plan of the paper is as follows. In Section 2 we deal
with several long-range models of modified gravity. Section
3 analyzes some dynamical effects in terms of the standard
Newtonian/Einsteinian laws of gravitation. The conclusions
are in Section 4.

2 EXOTIC MODELS OF MODIFIED GRAVITY

2.1 A Rindler-type acceleration

As a practical example of the aforementioned caveat, let us
consider the effective model for gravity of a central object
of mass M at large scales recently constructed by Grumiller
(2010). Among other things, it predicts the existence of a
constant and uniform acceleration

A = ARinr̂ (5)

2 Here e denotes the eccentricity: it is not the Napier number.

radially directed towards M . As shown in Iorio (2010a),
the Earth-Moon range residuals δρ over ∆t = 20 yr yield
the following constrain for a terrestrial Rindler-type extra-
acceleration

ARin . 5× 10−16 m s−2 = 0.5 m yr−2, (6)

which is in good agreement with eq. (4).
The problem is that, actually, a radial and constant

acceleration like that of eq. (5) does not induce any secu-
lar variation of the eccentricity. Indeed, from the standard
Gauss3 perturbation equation for e (Bertotti et al. 2003)

de

dt
=

√
1− e2

na

{

AR sin f + AT

[

cos f +
1

e

(

1− r

a

)

]}

,

(7)
in which f is the true anomaly4, and AR, AT are the radial
and transverse components of the perturbing acceleration
A, it turns out (Iorio 2010a)

∆e = −ARin

(

1− e2
)

(cosE − cosE0)

n2
, (8)

where E is the eccentric anomaly5, so that

∆e|2π0 = 0. (9)

2.2 A Yukawa-type long-range modification of
gravity

It is well known that a variety of theoretical paradigms
(Adelberger et al. 2003; Bertolami & Páramos 2005) al-
low for Yukawa-like deviations from the usual Newtonian
inverse-square law of gravitation (Burgess & Cloutier 1988).
The Yukawa-type correction to the Newtonian gravitational
potential UN = −µ/r, where µ .

= GM is the gravitational
parameter of the central body which acts as source of the
supposedly modified gravitational field, is

UY = −αµ∞

r
exp

(

− r

λ

)

, (10)

where µ∞ is the gravitational parameter evaluated at dis-
tances r much larger than the scale length λ.

In order to compute the long-term effects of eq. (10) on
the eccentricity of a test particle it is convenient to adopt
the Lagrange perturbative scheme (Bertotti et al. 2003). In

3 It is just the case to remind that the Gauss perturbative equa-
tions are valid for any kind of perturbing acceleration A, whatever
its physical origin may be.
4 It is an angle counted from the pericenter, i.e. the point of clos-
est approach to the central body, which instantaneously reckons
the position of the test particle along its Keplerian ellipse.
5 Basically, E can be regarded as a parametrization of the polar
angle in the orbital plane.



Anomalous changes in the lunar orbit 3

such a framework, the equation for the long-term variation
of e is (Bertotti et al. 2003)

〈

de

dt

〉

=
1

na2

(

1− e2

e

)(

1√
1− e2

∂R
∂ω

− ∂R
∂M

)

, (11)

where ω is the argument of pericenter6, M .
= n(t − tp) =

E− e sinE is the mean anomaly of the test particle7, and R
denotes the average of the perturbing potential over one or-
bital revolution. In the case of a Yukawa-type perturbation8,
eq. (10) yields

〈UY〉 = −αµ∞ exp
(

− a
λ

)

a
I0

(ae

λ

)

, (12)

where I0(x) is the modified Bessel function of the first kind
Ik(x) for k = 0. An inspection of eq. (11) and eq. (12)
immediately tells us that there is no secular variation of e
caused by an anomalous Yukawa-type perturbation which,
thus, cannot explain eq. (1).

2.3 Other long-range exotic models of gravity

The previous analysis has the merit of elucidating cer-
tain general features pertaining to a vast category of
long-range modified models of gravity. Indeed, eq. (11)
tells us that a long-term change of e occurs only if
the averaged extra-potential considered explicitly de-
pends on ω and on time through M or, equivalently,
E. Actually, the anomalous potentials arising in the
majority of long-range modified models of gravity are
time-independent and spherically symmetric (Dvali et al.
2000; Capozziello et al. 2001; Capozziello & Lambiase
2003; Dvali et al. 2003; Kerr et al. 2003; Allemandi et al.
2005; Gruzinov 2005; Jaekel & Reynaud 2005a,b;
Navarro & van Acoleyen 2005; Reynaud & Jaekel 2005;
Apostolopoulos & Tetradis 2006; Brownstein & Moffat
2006; Capozziello et al. 2006; Jaekel & Reynaud
2006a,b; Moffat 2006; Navarro & van Acoleyen
2006a,b; Sanders 2006; Adkins & McDonnell 2007;
Adkins et al. 2007; Bertolami et al. 2007; Capozziello 2007;
Capozziello & Francaviglia 2008; Nojiri & Odintsov 2007;
Bertolami & Santos 2009; de Felice & Tsujikawa 2010;
Ruggiero 2010; Sotiriou & Faraoni 2010; Fabrina et al.
2011). Anomalous accelerations A exhibiting a dependence
on the test particle’s velocity v were also proposed in
different frameworks (Jaekel & Reynaud 2005a,b; Hořava
2009a,b; Kehagias & Sfetsos 2009). Since they have to be
evaluated onto the unperturbed Keplerian ellipse, for which

6 It is an angle in the orbital plane reckoning the position of the
point of closest approach with respect to the line of the nodes
which is the intersection of the orbital plane with the reference
{x, y} plane.
7 tp is the time of passage at pericenter.
8 Several investigations of Yukawa-type effects on the lunar data,
yielding more and more tight constraints on its parameters, are
present in the literature: see, e.g., Müller & Biskupek (2007);
Müller et al. (2007, 2008, 2009).

the following relations hold (Murray & Correia 2010)










































r = a (1− e cosE) ,

dt =
(

1−e cosE
n

)

dE,

vR = nae sinE
1−e cosE

,

vT =
na
√

1−e2

1−e cosE
,

(13)

where vR and vT are the unperturbed, Keplerian radial and
transverse components of v, it was straightforward to infer
from eq. (7) that no long-term variations of the eccentricity
arose at all (Iorio 2007; Iorio & Ruggiero 2010).

An example of time-dependent anomalous potentials
occurs if either a secular change of the Newtonian gravi-
tational constant9 (Milne 1935; Dirac 1937) or of the mass
of the central body is postulated, so that a percent time vari-
ation µ̇/µ of the gravitational parameter can be considered.
In such a case, it was recently shown with the Gauss per-
turbative scheme that the eccentricity experiences a secular
change given by (Iorio 2010b)

〈ė〉 = (1 + e)

(

µ̇

µ

)

. (14)

As remarked in Iorio (2010b), eq. (1) and eq. (14) would
imply an increase

µ̇

µ
= +8.5× 10−12 yr−1. (15)

If attributed to a change in G, eq. (15) would be one
order of magnitude larger than the present-day bounds
on Ġ/G obtained from10 LLR (Müller & Biskupek 2007;
Williams et al. 2007). Moreover, Pitjeva (2010) recently ob-
tained a secular decrease of G as large as

Ġ

G
= (−5.9± 4.4) × 10−14 yr−1 (16)

from planetary data analyses: if applied to eq. (14), it is
clearly insufficient to explain the empirical result of eq. (1).
Putting aside a variation of G, the gravitational parameter
of the Earth may experience a time variation because of
a steady mass accretion of non-annihilating Dark Matter
(Blinnikov & Khlopov 1983; Khlopov et al. 1991; Khlopov
1999; Foot 2004; Adler 2008). Khriplovich & Shepelyansky
(2009) and Xu & Siegel (2008) assume for the Earth

Ṁ

M
≈ +10−17 yr−1, (17)

which is far smaller than eq. (15), as noticed by Iorio (2010c).
Adler (2008) yields an even smaller figure for Ṁ/M .

3 STANDARD NEWTONIAN AND
EINSTEINIAN DYNAMICAL EFFECTS

In this Section we look at possible dynamical causes for eq.
(1) in terms of standard Newtonian and general relativistic

9 According to Dirac (1937), G should decrease with the age of
the Universe.
10 Because of the secular tidal effects, the LLR-based determina-
tions of Ġ depend more strongly on the solar perturbations, and
the µ̇/µ values should be interpreted as being sensitive to changes
in the Sun’s gravitational parameter GM .
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gravitational effects which were not modeled in processing
the LLR data.

3.1 The general relativistic Lense-Thirring field
and other stationary spin-dependent effects

It is interesting to notice that the magnitude of the gen-
eral relativistic Lense & Thirring (1918) acceleration expe-
rienced by the Moon because of the Earth’s angular momen-
tum S = 5.86× 1033 kg m2 s−1 (McCarthy & Petit 2004) is
just

ALT ≈ 2vGS

c2a3
= 1.6× 10−16 m s−2 = 0.16 m yr−2, (18)

i.e. close to eq. (4). On the other hand, it is well known that
the Lense-Thirring effect does not cause long-term varia-
tions of the eccentricity. Indeed, the integrated shift of e
from an initial epoch corresponding to f0 to a generic time
corresponding to f is (Soffel 1989)

∆e = −2GS cos I
′

(cos f − cos f0)

c2na3
√
1− e2

. (19)

From eq. (19) it straightforwardly follows that after one or-
bital revolution, i.e. for f → f0 + 2π, the gravitomagnetic
shift of e vanishes. In fact, eq. (19) holds only for a specific
orientation of S, which is assumed to be directed along the
reference z axis; incidentally, let us remark that, in this case,
the angle I

′

in eq. (19) is to be intended as the inclination
of the Moon’s orbit with respect to the Earth’s equator11

Actually, in Iorio (2010d) it was shown that e does not sec-
ularly change also for a generic orientation of S since12

RLT =
2Gn

c2a(1− e2)
[Sz cos I + sin I (Sx sinΩ− Sy cos Ω)] .

(20)
Thus, standard general relativistic gravitomagnetism cannot
be the cause of eq. (1).

Iorio & Ruggiero (2009) explicitly worked out the grav-
itomagnetic orbital effects induced on the trajectory of a test
particle by the the weak-field approximation of the Kerr-
de Sitter metric. No long-term variations for e occur. Also
the general relativistic spin-spin effects à la Stern-Gerlach
do not cause long-term variations in the eccentricity (Iorio
2010d).

3.2 General relativistic gravitomagnetic
time-varying effects

By using the Gauss perturbative equations,
Ruggiero & Iorio (2010) analytically worked out the
long-term variations of all the Keplerian orbital elements
caused by general relativistic gravitomagnetic time-varying

11 It approximately varies between 18 deg and 29 deg
(Seidelmann 1992; Williams & Dickey 2003).
12 Here I,Ω can be thought as referring to the mean ecliptic
at J2000.0. Generally speaking, the longitude of the ascending
node Ω is an angle in the reference {x, y} plane determining the
position of the line of the nodes with respect to the reference x
direction.

effects. For the eccentricity, Ruggiero & Iorio (2010) found
a non-vanishing secular change given by

〈ė〉 = −GS1 (2 + e) cos I
′

c2a3n
, (21)

in which S1 denotes a linear change of the magnitude of the
angular momentum of the central rotating body.

In the case of the Earth, Ruggiero & Iorio (2010) quote

S1 = −5.6× 1016 kg m2 s−2 (22)

due to the secular decrease of the Earth’s diurnal rotation
period (Brosche & Schuh 1998) Ṗ /P = −3 × 10−10 yr−1.
Thus, eq. (21) and eq. (22) yield for the Moon’s eccentricity

〈ė〉 = −2× 10−23 yr−1, (23)

which is totally negligible with respect to eq. (1).

3.3 The first and second post-Newtonian static
components of the gravitational field

Also the first post-Newtonian, Schwarzschild-type, spheri-
cally symmetric static component of the gravitational field,
which was, in fact, fully modeled by Williams & Boggs
(2009), does not induce long-term variations of e (Soffel
1989). The same holds also for the spherically sym-
metric second post-Newtonian terms of order O(c−4)
(Damour & Schäfer 1988; Schäfer & Wex 1993; Wex 1995),
which were not modeled by Williams & Boggs (2009). In-
deed, let us recall that the components of the spacetime
metric tensor gµν , µ, ν = 0, 1, 2, 3, are, up to the second
post-Newtonian order, (Nordtvedt 1996)










g00 ∼= 1− 2M

r
+ 2

(

M

r

)2 − 3
2

(

M

r

)3
+ . . . ,

gij ∼= −δij
[

1 + 2M

r
+ 3

2

(

M

r

)2
+ . . .

]

, i, j = 1, 2, 3,

(24)
where M

.
= µ/c2. Notice that eq. (24) are written in the

standard isotropic gauge, suitable for a direct comparison
with the observations. Incidentally, let us remark that the
second post-Newtonian acceleration for the Moon is just

A2PN ≈ µ2n2

c4r
= 4×10−25 m s−2 = 4×10−10 m yr−2. (25)

3.4 The general relativistic effects for an oblate
body

Soffel et al. (1988), by using the Gauss perturbative scheme
and the usual Keplerian orbital elements, analytically
worked out the first-order post-Newtonian orbital effects in
the field of an oblate body with adimensional quadrupole
mass moment J2 and equatorial radius R.

It turns out that the eccentricity undergoes a non-
vanishing harmonic long-term variation which, in general
relativity, is13 (Soffel et al. 1988)

〈ė〉 = 21nJ2e sin
2 I

′

8 (1− e2)3

(

R

a

)2
( µ

c2a

)

(

1 +
e2

2

)

sin 2ω
′

. (26)

13 Here ω
′

refers to the Earth’s equator, so that its period
amounts to 8.85 yr (Roncoli 2005).
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In view of the fact that, for the Earth, it is J2 =
1.08263 × 10−3 (McCarthy & Petit 2004) and R = 6.378 ×
103 m (McCarthy & Petit 2004), it turns out that the first-
order general relativistic J2c

−2 effect is not capable to ex-
plain eq. (1) since it is

〈ė〉.4× 10−19 yr−1 (27)

as a limiting value for the periodic perturbation of eq. (26).
Soffel et al. (1988) pointed out that the second-order

mixed perturbations due to the Newtonian quadrupole
field and the general relativistic Schwarzschild accelera-
tion are of the same order of magnitude of the first-order
ones: their orbital effects were analytically worked out by
Heimberger et al. (1990) with the technique of the canoni-
cal Lie transformations applied to the Delaunay variables.
Given their negligible magnitude, we do not further deal
with them.

3.5 A massive ring of minor bodies

A Newtonian effect which was not modeled is the action
of the Trans-Neptunian Objects (TNOs) of the Edgeworth-
Kuiper belt (Edgeworth 1943; Kuiper 1951). It can be taken
into account by means of a massive circular ring having mass
mring ≤ 5.26×10−8 M⊙ (Pitjeva 2010) and radius Rring = 43
au (Pitjeva 2010). Following Fienga et al. (2008), it causes
a perturbing radial acceleration

Aring =
Gmring

2rR2
ring

[

b
(1)
3

2

(α)− αb
(0)
3

2

(α)
]

r, α
.
=

r

Rring
. (28)

The Laplace coefficients are defined as (Murray & Dermott
1999)

b(j)s
.
=

1

π

∫ 2π

0

cos(jψ)

(1− 2α cosψ + α2)s
dψ, (29)

where s is a half-integer. Since for the Moon α ≈ 3× 10−10,
eq. (28) becomes

Aring ≈ Gmring

2rR2
ring

αr, (30)

with

Aring ≈ 10−23 m s−2 ≈ 10−8 m yr−2, (31)

which is far smaller than eq. (4).
Actually, the previous results holds, strictly speaking,

in a heliocentric frame since the distribution of the TNOs is
assumed to be circular with respect to the Sun. Thus, it may
be argued that a rigorous geocentric calculation should take
into account for the non-exact circularity of the TNOs belt
with respect to the Earth. Anyway, in view of the distances
involved, such departures from azimuthal symmetry would
plausibly display as small corrections to the main term of
eq. (28). Given the negligible orders of magnitude involved
by eq. (31), we feel it is unnecessary to perform such further
calculations.

The dynamical action of the belt of the minor asteroids
(Krasinsky et al. 2002) was, actually, modeled, so that we
do not consider it here.

3.6 A distant massive object: Planet
X/Nemesis/Tyche

A promising candidate for explaining the anomalous
increase of the lunar eccentricity may be, at least in
principle, a trans-Plutonian massive body of plane-
tary size located in the remote peripheries of the solar
system: Planet X/Nemesis/Tyche (Lykawka & Mukai
2008; Melott & Bambach 2010; Fernández 2011;
Matese & Whitmire 2011). Indeed, as we will see, the
perturbation induced by it would actually cause a non-
vanishing long-term variation of e. Moreover, since it
depends on the spatial position of X in the sky and on its
tidal parameter

KX
.
=
GmX

d3X
, (32)

wheremX and dX are the mass and the distance of X, respec-
tively, it may happen that a suitable combination of them
is able to reproduce the empirical result of eq. (1).

Let us recall that, in general, the perturbing poten-
tial felt by a test particle orbiting a central body due to
a very distant, pointlike mass can be cast into the following
quadrupolar form (Hogg et al. 1991)

UX =
KX

2

[

r2 − 3
(

r · l̂

)2
]

, (33)

where l̂ = {lx, ly , lz} is a unit vector directed towards X
determining its position in the sky; its components are not
independent since the constraint

l2x + l2y + l2z = 1 (34)

holds. By introducing the ecliptic latitude βX and longitude
λX in a geocentric ecliptic frame, it is possible to write























lx = cosβX cos λX,

ly = cosβX sinλX,

lz = sin βX.

(35)

In eq. (33) r = {x, y, z} is the geocentric position vector
of the perturbed particle, which, in the present case, is the
Moon. Iorio (2011) has recently shown that the average of
eq. (33) over one orbital revolution of the particle is

〈UX〉 = KXa
2

32
U
(

e, I,Ω, ω; l̂
)

, (36)

with U
(

e, I,Ω, ω; l̂
)

given by eq. (37). Note that eq. (36)

and eq. (37) are exact: no approximations in e were used. In
the integration l̂ was kept fixed over one orbital revolution
of the Moon, as it is reasonable given the assumed large
distance of X with respect to it.

The Lagrange planetary equation of eq. (11) straight-
forwardly yields (Iorio 2011)

〈ė〉 = 15KXe
√
1− e2

16n
E
(

I,Ω, ω; l̂
)

, (38)

with E
(

I,Ω, ω; l̂
)

given by eq. (39).

Actually, the expectations concerning X are doomed to
fade away. Indeed, apart from the modulation introduced by
the presence of the time-varying I, ω and Ω in eq. (39), the
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U
.
= −

(

2 + 3e2
) (

−8 + 9l2x + 9l2y + 6l2z
)

− 120e2 sin 2ω (lx cosΩ + ly sinΩ) [lz sin I+

+ cos I (ly cos Ω− lx sinΩ)]− 15e2 cos 2ω
[

3
(

l2x − l2y
)

cos 2Ω + 2
(

l2x + l2y − 2l2z
)

sin2 I−

− 4lz sin 2I (ly cosΩ− lx sinΩ) + 6lxly sin 2Ω]− 6
(

2 + 3e2
) [(

l2x − l2y
)

cos 2Ω sin2 I+

+ 2lz sin 2I (ly cosΩ− lx sinΩ) + 2lxly sin2 I sin 2Ω
]

− 3 cos 2I
{(

2 + 3e2
) (

l2x + l2y − 2l2z
)

+

+ 5e2 cos 2ω
[(

l2x − l2y
)

cos 2Ω + 2lxly sin 2Ω
]}

.

(37)

E
.
= −8lz cos 2ω sin I (lx cos Ω + ly sinΩ) + 4 cos I cos 2ω [−2lxly cos 2Ω+

+
(

l2x − l2y
)

sin 2Ω
]

+ sin 2ω
[(

l2x − l2y
)

(3 + cos 2I) cos 2Ω + 2
(

l2x + l2y − 2l2z
)

sin2 I−

− 4lz sin 2I (ly cosΩ− lx sinΩ) + 2lxly (3 + cos 2I) sin 2Ω] .

(39)

values for the tidal parameter which would allow to obtain
eq. (1) are too large for all the conceivable positions {βX, λX}
of X in the sky. This can easily be checked by keeping ω and
Ω fixed at their J2000.0 values as a first approximation.

Figure 1 depicts the X-induced variation of the lunar
eccentricity, normalized to eq. (1), as a function of βX and
λX for the scenarios by Lykawka & Mukai (2008) (mmax

X =
0.7 m⊕, d

min
X = 101.3 au), and by Matese & Whitmire

(2011) (mmax
X = 4 mJup, dX = 30 kau). It can be noticed

that the physical and orbital features of X postulated by
such two recent theoretical models would induce long-term
variations of the lunar eccentricity much smaller than eq.
(1). Conversely, it turns out that a tidal parameter as large
as

KX = 4.46× 10−24 s−2 (40)

would yield the result of eq. (1). Actually, eq. (40) is to-
tally unacceptable since it corresponds to distances of X as
absurdly small as dX = 30 au for a terrestrial body, and
dX = 200 au for a Jovian mass (Iorio 2011).

We must conclude that not even the hypothesis of
Planet X is a viable one to explain the anomalous increase
of the lunar eccentricity of eq. (1).

4 SUMMARY AND CONCLUSIONS

In this paper we dealt with the anomalous increase of the
eccentricity e of the orbit of the Moon recently reported from
an analysis of a multidecadal record of LLR data points.

We looked for possible explanations in terms of unmod-
eled dynamical features of motion within either the stan-
dard Newtonian/Einsteinian paradigm or several long-range
models of modified gravity. As a general rule, we, first, no-
ticed that it would be misleading to simply find the right
order of magnitude for the extra-acceleration due to this or
that candidate effect. Indeed, it is mandatory to explicitly
check if a potentially viable candidate does actually induce
a non-vanishing averaged variation of the eccentricity. This
holds, in principle, for the search of an explanation of any
other possible anomalous effect. Quite generally, it turned
out that any time-independent and spherically symmetric
perturbation does not affect the eccentricity with long-term
changes.

Thus, most of the long-range modified models of gravity

proposed in more or less recent times for other scopes are
automatically ruled out. The present-day limits on the mag-
nitude of a terrestrial Rindler-type perturbing acceleration
are of the right order of magnitude, but it does not secularly
affect e. As time-dependent candidates capable to cause sec-
ular shifts of e, we considered the possible variation of the
Earth’s gravitational parameter µ both because of a tem-
poral variation of the Newtonian constant of gravitation G
and of its mass itself due to a steady mass accretion of non-
annihilating Dark Matter. In both cases, the resulting time
variations of e are too small by several orders of magnitude.

Moving to standard general relativity, we found that
the gravitomagnetic Lense-Thirring lunar acceleration due
to the Earth’s angular momentum, not modeled in the data
analysis, has the right order of magnitude, but it, actually,
does not induce secular variations of e. The same holds also
for other general relativistic spin-dependent effects. Con-
versely, e undergoes long-term changes caused by the general
relativistic first-order effects due to the Earth’s oblateness,
but they are far too small. The second-order post-Newtonian
part of the gravitational field does not affect the eccentricity.

Within the Newtonian framework, we considered the
action of an almost circular massive ring modeling the
Edgeworth-Kuiper belt of Trans-Neptunian Objects, but it
does not induce secular variations of e. In principle, a vi-
able candidate would be a putative trans-Plutonian massive
object (PlanetX/Nemesis/Tyche), recently revamped to ac-
commodate certain features of the architecture of the Kuiper
belt and of the distribution of the comets in the Oort cloud,
since it would cause a non-vanishing long-term variation of
the eccentricity. Actually, the values for its mass and dis-
tance needed to explain the empirically determined increase
of the lunar eccentricity would be highly unrealistic and in
contrast with the most recent viable theoretical scenarios for
the existence of such a body. For example, a terrestrial-sized
body should be located at just 30 au, while an object with
the mass of Jupiter should be at 200 au.

Thus, in conclusion, the issue of finding a satisfactorily
explanation of the observed orbital anomaly of the Moon
still remains open. Our analysis should have effectively re-
stricted the field of possible explanations, indirectly pointing
towards either non-gravitational, mundane effects or some
artifacts in the data processing. Further data analyses, hope-
fully performed by independent teams, should help in shed-
ding further light on such an astrometric anomaly.



Anomalous changes in the lunar orbit 7

Moon: e
 
X�e
 
meas HmX = 0.7 mEarth, dX = 101.3 auL

0

100

200

300
ΛX HdegL

0

20

40

60

80

ΒX HdegL

-0.02

0

0.02

0

100

200

300
ΛX HdegL

Moon: e
 
X�e
 
meas HmX = 4 mJup, dX = 30 kauL

0

100

200

300
ΛX HdegL

0

20

40

60

80

ΒX HdegL

-1´10-6

0

1´10-6

0

100

200

300
ΛX HdegL

Figure 1. Long-term variation of the lunar eccentricity, normalized to eq. (1), induced by a trans-Plutonian, pointlike object X as a

function of its ecliptic latitude βX and longitude λX. The node Ω and the perigee ω of the Moon were kept fixed to the J2000.0 values
quoted in Table 1. The scenarios for the perturbing body X are those by Lykawka & Mukai (2008) (left panel), and by Matese & Whitmire
(2011) (right panel).
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Bertolami O., Páramos J., 2005, Phys. Rev. D, 71, 023521
Bertolami O., Böhmer C. G., Harko T., Lobo F. S. N.,
2007, Phys. Rev. D, 75, 104016

Bertolami O., Santos N. M. C., 2009, Phys. Rev. D, 79,
127702

Bertotti B., Farinella P., Vokrouhlický D., 2003, Physics of
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